首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

This article presents the results of a numerical simulation carried out from a series of standard triaxial tests conducted on limestone sand from a quarry situated in Algiers (center of Algeria). The main objective of the investigation is to obtain from a numerical analysis a simple soil model to represent the behaviour of the studied material. The 2D Plaxis program is used in this study with the introduction of a model based on the work of Brinkgreve et al. (in: Benz T, Nordal S (eds) Numerical methods in geotechnical engineering, CRC Press, Boca Raton, 2010). Corrections were made to the formulas used, which are based on the relative density, in order to improve the quality of the results in terms of soil behaviour, mechanical strength and deformation. The comparison of the experimental and numerical results for the Mohr–Coulomb model gives a considerable appreciation on the deformation and resistance. However, it fails to represent properly the stress–strain curve. The use of Duncan and Chang model (Hardening Soil Model-HSM) leads to an underestimation of the resistance characteristics (values of the friction angles) with an overall error of 7.98%. Our work consists of the application of two corrections to the HSM model. The first correction is based on the work of Brinkgreve et al. (2010), which focused on the common parameters between the HSM and the HSSM. An overestimation of the deformations was observed with an overall error of 155.96%. The second step consists of canceling the correction of the elastic modules (\(E_{50}^{ref}\), \(E_{oed}^{ref}\)) which reduces the error to 1.53%.

  相似文献   

2.
Najaf-sea quarry is located in Najaf city about 160 km south west of Baghdad the capital of Iraq. It is the main source that supplies track ballast for maintenance of existing railway network and construction of new railway lines in the middle and southern parts of Iraq. Track ballast experience a complex combination of stresses during its service lifetime, primarily from repeated axial loads of the trains in addition to stresses generated from the environmental conditions. The ideal evaluation of suitability of track ballast must be carried out under real field loading conditions, however such field tests are usually costly and time consuming. On the other hand laboratory model tests simulating field loads under limited boundary conditions can provide satisfactory indication about the suitability of the material. The present paper investigates the deformation characteristics of Najaf-sea track ballast, under repeated loading using model tests simulating ballast conditions under a selected track section. A test setup was designed and manufactured capable of applying both monotonic as well as repeated loading on the track section under different conditions. The repeated model tests which simulate as close as possible the field conditions shed the light on the generated settlement, modulus of deformation and degradation of the ballast particles under different repeated loading levels. Statistical analysis in terms of breakage index and repeated applied load revealed satisfactory correlations that help in understanding the overall performance of the ballast material. The results also demonstrate that 4–5 tamping are capable of controlling both the settlement and modulus of deformation of the ballast material.  相似文献   

3.
In this paper, an experimental investigation of cement treated sand is performed under triaxial tests in order to quantify the effects of cementation on the stress–strain behavior, stiffness and shear strength. Samples were cured up to 180 days. The results show that the stress–strain behavior of cemented sands is nonlinear with contractive–dilative stages. The stress–strain response is strongly influenced by effective confining pressure and cement content. Stiffness and strength are greatly improved by an increase in binder content. An increase of the angle of shearing resistance and cohesion intercept with increasing cement content is observed consistently. Brittle behavior is observed at low confining pressure and high cement content. After yielding, the increase in the dilatancy accelerates. Two competing related processes determine the peak strength: Bond breakages cause a strength reduction but the associated dilatancy leads to a strength increase. This finding and the experimental observation that the dilatancy at the peak state increases with increasing cement content explain why the measured peak-state strength parameters, c′ and φp′, are relevant to the binder content.  相似文献   

4.
Geotechnical and Geological Engineering - Cemented paste backfill (CPB), a man-made soil undergoing cementation, is extensively applied to support underground mine openings or spaces and provide...  相似文献   

5.
A comprehensive literature review has been carried out on existing models that characterize soil response under the impact of blast shock waves. Various models in the literature are reviewed and discussed in terms of their equations of state that account for the effect of high pressure, failure models that control the yield behaviour, and strength models that represent the effect of high strain-rates, along with a comparison of their advantages and limitations. Then, the application of different soil models to blast-induced liquefaction is elucidated and compared. Consequently, this review provides a comprehensive understanding of the fundamental and unique aspects of modelling soil response subjected to such transient impulsive loading on the grounds of increasing global interest in blast response of soils.  相似文献   

6.
7.
The variation of the shear strength of infilled rock joints under cyclic loading and constant normal stiffness conditions is studied. To simulate the joints, triangular asperities inclined at angles of 9.5° and 18.5° to the shear movement were cast using high-strength gypsum plaster and infilled with clayey sand. These joints were sheared cyclically under constant normal stiffness conditions. It was found that, for a particular normal stiffness, the shear strength is a function of the initial normal stress, initial asperity angle, joint surface friction angle, infill thickness, infill friction angle, loading direction and number of loading cycles. Based on the experimental results, a mathematical model is proposed to evaluate the shear strength of infilled rock joints in cyclic loading conditions. The proposed model takes into consideration different initial asperity angles, initial normal stresses and ratios of infill thickness to asperity height.  相似文献   

8.
A series of laboratory tests were performed to examine the fatigue behavior of granite subjected to cyclic loading under triaxial compression condition. In these tests, the influences of volumetric change and residual strain on the deformation modulus of granite under triaxial cyclic compression were investigated. It is shown that the fatigue behavior of granite varies with the tendency for volumetric change in triaxial cyclic compression tests. In the stress–strain space, there are three domains for fatigue behavior of rock subjected to cyclic loading, namely the volumetric compaction, volumetric dilation with strain-hardening behavior, and volumetric dilation with strain-softening behavior domains. In the different domains, the microscopic mechanisms for rock deformation are different. It was also found that the stress level corresponding to the transition from volumetric compaction to volumetric dilation could be considered as the threshold for fatigue failure. The potential of fatigue deformation was compared with that of plastic deformation. The comparison shows that rocks exhibit higher resistances to volumetric deformation under cyclic loading than under plastic loading. The influence of residual strain on the fatigue behavior of rock was also investigated. It was found that the axial residual strain could be a better option to describe the fatigue behavior of rock than the loading cycle number. A constitutive model for the fatigue behavior of rock subjected to cyclic loading is proposed according to the test results and discussion. In the model, the axial residual strain is considered as an internal state variable. The influences of confining pressure and peak deviatoric stress on the deformation modulus are considered in a term named the equivalent stress. Comparison of test results with model predictions shows that the proposed model is capable of describing the prepeak fatigue behavior of rock subjected to cyclic loading.  相似文献   

9.
周期荷载作用下粘性土变形及强度特性述评   总被引:11,自引:2,他引:11  
白冰  周健 《岩土力学》1999,20(3):84-90
周期荷载作用下粘性土变形及强度特性的研究所涉及的内容非常广泛,而我国在该领域的研究成果还较少。文中对其国内外研究现状作了较为详尽的评述,以期引起岩土工作者足够的重视。  相似文献   

10.
Summary Evaluation of the effects of small repetitive earthquakes on the strength parameters of rock joints in active seismic zones is of interest of the designers of underground constructions. In order to evaluate these effects, it is necessary to study the behaviour of rock joints under dynamic and cyclic loadings. This paper presents the results of a systematic study on the behaviour of artificial rock joints subjected to cyclic shearing. More than 30 identical replicas have been tested using triaxial compression devices under different conditions of monotonic and cyclic loading. At the first stage a few samples have been tested in monotonic loading modes under various confining pressures and rate of displacement. In the second series of tests, small cyclic loads were applied on the samples for increasing number of cycles, frequency levels and stress amplitudes. These were then followed by monotonic loading again. The variations of maximum and residual shear strengths for each test have been studied. The results show increase of shear strength as a result of the increase in confining pressure and they display decrease of shear strength due to the increase of rate of loading, number of cycles, frequency levels and stress amplitudes.  相似文献   

11.
It is of great importance to investigate the effect of loading rate on the behaviour of brittle material such as concrete and rock because engineering structures are subjected to multiple loading conditions. Although material behaviour under single loading mode has been extensively studied, very limited research has been conducted to investigate the performance of brittle materials subjected to varying loading conditions. This paper presents an experimental study of the effects of single and multiple strain rates (ε) on cement mortar samples. The first set of samples was loaded at constant strain rates until failure. For the remaining samples, the first strain rate (0.005 mm/s) was applied to the sample up to a predetermined load, and then the second strain was initiated immediately by using the specially-designed gear system in place in the compression rig. As expected, the increase in strain rate showed an increase in peak strength of the sample with reduced ultimate strain. For multiple strain modes, it was observed that the highest peak strength occurred when the second strain was applied at 50 % of the peak strength of the first strain.  相似文献   

12.
13.
为探索滑坡灾害中土在复杂条件下的剪切力学特性,本文利用大型环剪试验机,通过进行各种排水条件下的连续大位移剪切试验,对不同法向应力、剪切速率和孔隙水压力等复杂条件下饱和砂土的力学特性及其变化机理进行了研究。结果表明:1)在连续快速剪切条件下,砂土剪切力学特性在干燥、不排水和排水等条件下呈现不同的变化形式。其中在不排水条件下,饱和砂出现一定的应变软化现象。2)在相同正应力和剪切速率的环剪试验中,饱和砂在不同排水条件下(上排水、下排水、上下排水)的抗剪强度出现显著差异。3)在排水环剪试验条件下,砂土剪切应力与强度的差异性变化不仅与土体内细土颗粒运移和结构变化有关,并且受到剪切过程中不同排水条件下孔隙水压力变化的影响和控制。4)排水环剪条件下,饱和砂孔隙水压力的消散变化不仅与不同排水方式下土体内所形成的排水通道顺畅程度有关,并且受到不同剪切速率和法向应力的影响作用。  相似文献   

14.
This paper presents the results of two-way cyclic lateral load tests carried out on model pile groups embedded in soft marine clay. The tests are conducted on 1 × 2, 2 × 2 and 3 × 3 pile groups having length to diameter ratio (L/D) of 15, 30 and 40 with the spacing to diameter ratio (S/D) of 3, 5, 7 and 9. The experimental results are presented in the form of load–deflection curves and bending moment profiles. Cyclic group efficiency, critical spacing, critical cyclic load level and cyclic p-multipliers are evaluated. It is found that the lateral capacity of the 3 × 3 group reduces by about 42% after 50 cycles of loading. The cyclic p-multipliers of 3 × 3 pile group are found to be 0.41, 0.25 and 0.29 for leading, intermediate and rear rows respectively. The test results are compared with the numerical analysis carried out by py method using GROUP program. The analysis carried out with experimentally evaluated p-multipliers predicts load—deflection and bending profiles of pile groups reasonably well, but underestimates the depth to maximum bending moment by about 15%.  相似文献   

15.
由于上海轨道交通四号线海伦路站隧道周围软土在地铁行车荷载作用下产生变形,使隧道发生局部开裂、渗水而需要对地铁隧道进行加固处理。通过上海地铁4号线海伦路站附近隧道周围加固软粘土进行应力控制的循环三轴试验,研究了地铁行车荷载作用下加固软粘土的动孔压发展情况,充分考虑了土体围压、固结比、轴向循环荷载的大小及频率对动孔压的影响。研究结果认为,其他条件相同时,加固软粘土孔压随振动次数、循环荷载幅值的增大而增大,随围压和加载频率的增大而减小,可以用二次对数关系曲线对加固软粘土残余孔压变化进行预测。  相似文献   

16.
A series of axi-symmetry models using finite element analyses were performed to investigate the behavior of circular footings over reinforced sand under static and dynamic loading. Geogrid was modeled as an elastic element and the soil was modeled using hardening soil model which use an elasto-plastic hyperbolic stress–strain relation. Several parameters including number of geogrid layers, depth to the first geogrid layer, spacing between layers and load amplitude of dynamic loading are selected in this paper to investigate the influence of these parameters on the performance of reinforced systems under both static and dynamic loads. The numerical studies demonstrated that the presence of geogrid in sand makes the relationship between contact pressure and settlement of reinforced system nearly linear until reaching the failure stage. The rate of footing settlement decreases as the number of loading cycles increases and the optimum values of the depth of first geogrid layer and spacing between layers is found 20% of the footing diameter. Some significant observations on the performance of footing-geogrid systems with change of the values of parametric study are presented in this paper.  相似文献   

17.
加筋尾矿砂的连续增强区   总被引:2,自引:0,他引:2  
王凤江  王来贵 《岩土工程技术》2004,18(3):138-140,143
为研究土工织物增强尾矿砂结构的变形、破坏机理 ,室内进行了不同铺设层数下的三轴剪切试验。试验结果表明 :当仅铺设一层土工织物时 ,试件的变形、破坏特征和纯尾矿砂相似 ;随着土工织物铺设层数的增加 ,试件中均出现数个水平连续增强区域 ,抑制剪切变形的进一步发展。试件达到峰值强度后 ,仍有较高的承载能力。最后探讨了连续增强区对加筋土结构强度增长的影响  相似文献   

18.
19.
20.
Time-Dependent Behaviour and Static Liquefaction Phenomenon of Sand   总被引:1,自引:0,他引:1  
Recent laboratory and field experiments have confirmed that sand does indeed exhibit time-dependent behaviour. Based on these findings, it was considered necessary to revisit some of the published experimental results on the static liquefaction phenomenon of loose anisotropic Hostun RF sand. Time-dependency might have had a significant influence on the observed undrained response of anisotropic consolidated sand specimens. Specific triaxial tests have been performed and a qualitative analysis is presented in this paper. It is shown that, despite the differences on the anisotropic consolidation path employed, different specimens show qualitatively identical undrained responses if creep periods are performed at identical test stages or if the anisotropic consolidation takes place very slowly. With time, the undrained stiffness and strength are considerably improved and this may explain why the static liquefaction phenomenon is not as common in practice as could be predicted based on an instability line concept. Whereas the original instability line concept was developed independently of time-dependency, in field situations, the liquefaction resistance of the sand can increase with time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号