首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A global-mean model of coupled neutral and ion chemistry on Titan has been developed. Unlike the previous coupled models, the model involves ambipolar diffusion and escape of ions, hydrodynamic escape of light species, and calculates the H2 and CO densities near the surface that were assigned in some previous models. We tried to reduce the numbers of species and reactions in the model and remove all species and reactions that weakly affect the observed species. Hydrocarbon chemistry is extended to C12H10 for neutrals and C10H+11 for ions but does not include PAHs. The model involves 415 reactions of 83 neutrals and 33 ions, effects of magnetospheric electrons, protons, and cosmic rays. UV absorption by Titan's haze was calculated using the Huygens observations and a code for the aggregate particles. Hydrocarbon, nitrile, and ion chemistries are strongly coupled on Titan, and attempt to calculate them separately (e.g., in models of ionospheric composition) may result in significant error. The model densities of various species are typically in good agreement with the observations except vertical profiles in the stratosphere that are steeper than the CIRS limb data. (A model with eddy diffusion that facilitates fitting to the CIRS limb data is considered as well.) The CO densities are supported by the O+ flux from Saturn's magnetosphere. The ionosphere includes a peak at 80 km formed by the cosmic rays, steplike layers at 500-700 and 700-900 km and a peak at 1060 km (SZA = 60°). Nighttime densities of major ions agree with the INMS data. Ion chemistry dominates in the production of bicyclic aromatic hydrocarbons above 600 km. The model estimates of heavy positive and negative ions are in reasonable agreement with the Cassini results. The major haze production is in the reactions C6H + C4H2, C3N + C4H2, and condensation of hydrocarbons below 100 km. Overall, precipitation rate of the photochemical products is equal to 4-7 kg cm−2 Byr−1 (50-90 m Byr−1 while the global-mean depth of the organic sediments is ∼3 m). Escape rates of methane and hydrogen are 2.9 and 1.4 kg cm−2 Byr−1, respectively. The model does not support the low C/N ratio observed by the Huygens ACP in Titan's haze.  相似文献   

2.
D Luz  F Hourdin 《Icarus》2003,166(2):328-342
We present a numerical study of barotropic waves in Titan's stratosphere based on a shallow-water model. The forcing of the zonal flow by the mean meridional circulation is represented by a relaxation towards a barotropically unstable wind profile. The relaxation profile is consistent with observations and with previous results from a 3D general circulation model. The time constant of the forcing that best matches the northward eddy-transport of zonal momentum from the 3D model is τ∼5 Titan days. The eddy wind field is a zonal wavenumber-2 wave with a peak amplitude about 10% of the mean wind speed. The latitudinal transport of angular momentum by the wave tends to keep the flow close to marginal stability by carrying momentum upgradient, from the core of the jets into the low latitudes. Although the strongest eddy motions occur at the latitudes of the wind maxima, the strongest mixing takes place at the barotropically unstable regions, close to ±30° and spanning about 30° in latitude. An eddy-mixing time constant of the order of 1 Titan day is inferred within these regions, and of a few tens of days within regions of stable flow. Horizontal gradients in transient tracer fields are less than 10% of the latitudinal gradient of the meridional tracer profile. Cassini's detection of such waves could provide a direct observation of wind speeds at stratospheric levels.  相似文献   

3.
Planetary atmospheres are complex dynamical systems whose structure, composition, and dynamics intimately affect the propagation of sound. Thus, acoustic waves, being coupled directly to the medium, can effectively probe planetary environments. Here we show how the acoustic absorption and speed of sound in the atmospheres of Venus, Mars, Titan, and Earth (as predicted by a recent molecular acoustics model) mirror the different environments. Starting at the surface, where the sound speed ranges from ∼200 m/s for Titan to ∼410 m/s for Venus, the vertical sound speed profiles reveal differences in the atmospheres' thermal layering and composition. The absorption profiles are relatively smooth for Mars, Titan, and Earth while Venus stands out with a noticeable attenuation dip occurring between 40 and 100 km. We also simulate a descent module sampling the sound field produced by a low-frequency “event” near the surface noting the occurrence of acoustic quiet zones.  相似文献   

4.
Xun Zhu  Jeng-Hwa Yee 《Icarus》2007,189(1):136-150
A one-dimensional photochemical-transport model for the martian lower atmosphere has been developed to study the diurnal cycles of wave-photochemistry coupling. The model self-consistently calculates water vapor mixing ratio profiles, which exhibit strong vertical and diurnal variations mainly due to the high sensitivity of the saturation vapor pressure to temperature variation. The dynamical coupling of water vapor caused by the temperature variation induced by tidal waves, vertical transport parameterized by eddy diffusion, and linear relaxation introduced in condensation-sublimation processes all have similar timescales of diurnal variation. This leads to a significant asymmetric distribution of water vapor concentration as a function of local time. As a result, the net effect of the temperature variation by tidal waves depletes the water vapor concentration in its diurnal mean. The coupling processes also deplete the diurnally averaged HOx concentration, which in turn leads to significant enhancements of both ozone concentration and the associated airglow emissions in the martian atmosphere. The model also shows explicitly the importance of photochemical-transport coupling to the airglow emissions and its implications in species retrievals when the photochemical times of the excited states are comparable to the timescale of diurnal variation.  相似文献   

5.
A one-dimensional composition model of Titan's upper atmosphere is constructed, coupling 36 neutral species and 47 ions. Energy inputs from the Sun and from Saturn's magnetosphere and updated temperature and eddy coefficient parameters are taken into account. A rotating technique at constant latitude and varying local-time is proposed to account for the diurnal variation of solar inputs. The contributions of photodissocation, neutral chemistry, ion-neutral chemistry, and electron recombination to neutral production are presented as a function of altitude and local time. Local time-dependent mixing ratio and density profiles are presented in the context of the TA and T5 Cassini data and are compared in detail to previous models. An independent and simplified ion and neutral scheme (19-species) is also proposed for future 3D-purposes. The model results demonstrate that a complete understanding of the chemistry of Titan's upper atmosphere requires an understanding of the coupled ion and neutral chemistry. In particular, the ionospheric chemistry makes significant contributions to production rates of several important neutral species.  相似文献   

6.
D. Luz  F. Hourdin  S. Lebonnois 《Icarus》2003,166(2):343-358
We present a 2D general circulation model of Titan's atmosphere, coupling axisymmetric dynamics with haze microphysics, a simplified photochemistry and eddy mixing. We develop a parameterization of latitudinal eddy mixing by barotropic waves based on a shallow-water, longitude-latitude model. The parameterization acts locally and in real time both on passive tracers and momentum. The mixing coefficient varies exponentially with a measure of the barotropic instability of the mean zonal flow. The coupled GCM approximately reproduces the Voyager temperature measurements and the latitudinal contrasts in the distributions of HCN and C2H2, as well as the main features of the zonal wind retrieved from the 1989 stellar occultation. Wind velocities are consistent with the observed reversal time of the North-South albedo asymmetry of 5 terrestrial years. Model results support the hypothesis of a non-uniform distribution of infrared opacity as the cause of the Voyager temperature asymmetry. Transport by the mean meridional circulation, combined with polar vortex isolation may be at the origin of the latitudinal contrasts of trace species, with eddy mixing remaining restricted to low latitudes most of the Titan year. We interpret the contrasts as a signature of non-axisymmetric motions.  相似文献   

7.
Solar and X-ray radiation and energetic plasma from Saturn's magnetosphere interact with the upper atmosphere producing an ionosphere at Titan. The highly coupled ionosphere and upper atmosphere system mediates the interaction between Titan and the external environment. A model of Titan's nightside ionosphere will be described and the results compared with data from the Ion and Neutral Mass Spectrometer (INMS) and the Langmuir probe (LP) part of the Radio and Plasma Wave (RPWS) experiment for the T5 and T21 nightside encounters of the Cassini Orbiter with Titan. Electron impact ionization associated with the precipitation of magnetospheric electrons into the upper atmosphere is assumed to be the source of the nightside ionosphere, at least for altitudes above 1000 km. Magnetospheric electron fluxes measured by the Cassini electron spectrometer (CAPS ELS) are used as an input for the model. The model is used to interpret the observed composition and structure of the T5 and T21 ionospheres. The densities of many ion species (e.g., CH+5 and C2H+5) measured during T5 exhibit temporal and/or spatial variations apparently associated with variations in the fluxes of energetic electrons that precipitate into the atmosphere from Saturn's magnetosphere.  相似文献   

8.
V. Vuitton  R.V. Yelle 《Icarus》2007,191(2):722-742
High-energy photons, electrons, and ions initiate ion-neutral chemistry in Titan's upper atmosphere by ionizing the major neutral species (nitrogen and methane). The Ion and Neutral Mass Spectrometer (INMS) onboard the Cassini spacecraft performed the first composition measurements of Titan's ionosphere. INMS revealed that Titan has the most compositionally complex ionosphere in the Solar System, with roughly 50 ions at or above the detection threshold. Modeling of the ionospheric composition constrains the density of minor neutral constituents, most of which cannot be measured with any other technique. The species identified with this approach include the most complex molecules identified so far on Titan. This confirms the long-thought idea that a very rich chemistry is actually taking place in this atmosphere. However, it appears that much of the interesting chemistry occurs in the upper atmosphere rather than at lower altitudes. The species observed by INMS are probably the first intermediates in the formation of even larger molecules. As a consequence, they affect the composition of the bulk atmosphere, the composition and optical properties of the aerosols and the flux of condensable material to the surface. In this paper, we discuss the production and loss reactions for the ions and how this affects the neutral densities. We compare our results to neutral densities measured in the stratosphere by other instruments, to production yields obtained in laboratory experiments simulating Titan's chemistry and to predictions of photochemical models. We suggest neutral formation mechanisms and highlight needs for new experimental and theoretical data.  相似文献   

9.
Masaru Yamamoto 《Icarus》2011,211(2):993-1006
Heat and material transport processes caused by convective adjustment and mixing are important in modeling of Venus’ atmosphere. In the present study, microscale atmospheric simulations near the venusian surface were conducted using a Weather Research and Forecasting model to elucidate the thermal and material transport processes of convective adjustment and mixing. When convective adjustment occurs, the heat and passive tracer are rapidly mixed into the upper stable layer with convective penetration. The convective adjustment produces large eddy diffusions of heat and passive tracer, which may explain the large eddy diffusions estimated in the radiative-convective equilibrium model.For values of surface heat flux Q greater than a threshold (=0.064 K m s−1 in the present study), the convectively mixed layer with high eddy diffusion coefficients grows with time. In contrast, the mixed layer decays with time for Q values smaller than the threshold. The thermal structure near the surface is controlled not only by extremely long-term radiative processes, but also by microscale dynamics with time scales of several hours. A mixed layer with high eddy diffusion coefficients may be maintained or grow with time if the surface heat flux is high in the volcanic hotspot and adjacent areas.  相似文献   

10.
Jane L. Fox 《Icarus》2011,216(2):625-639
We have modeled the near and post-terminator thermosphere/ionosphere of Venus with a view toward understanding the relative importance of EUV solar fluxes and downward fluxes of atomic ions transported from the dayside in producing the mean ionosphere. We have constructed one-dimensional thermosphere/ionosphere models for high solar activity for seven solar zenith angles (SZAs) in the dusk sector: 90°, 95°, 100°, 105°, 110°, 115° and 125°. For the first 4 SZAs, we determine the optical depths for solar fluxes from 3 Å to 1900 Å by integrating the neutral densities numerically along the slant path through the atmosphere. For SZAs of 90°, 95°, and 100°, we first model the ionospheres produced by absorption of the solar fluxes alone; for 95°, 100°, and 105° SZAs, we then model the ion density profiles that result from both the solar source and from imposing downward fluxes of atomic ions, including O+, Ar+, C+, N+, H+, and He+, at the top of the ionospheric model in the ratios determined for the upward fluxes in a previous study of the morphology of the dayside (60° SZA) Venus ionosphere. For SZAs of 110°, 115° and 125°, which are characterized by shadow heights above about 300 km, the models include only downward fluxes of ions. The magnitudes of the downward ion fluxes are constrained by the requirement that the model O+ peak density be equal to the average O+ peak density for each SZA bin as measured by the Pioneer Venus Orbiter Ion Mass Spectrometer. We find that the 90° and 95° SZA model ionospheres are robust for the solar source alone, but the O+ peak density in the “solar-only” 95° SZA model is somewhat smaller than the average value indicated by the data. A small downward flux of ions is therefore required to reproduce the measured average peak density of O+. We find that, on the nightside, the major ion density peaks do not occur at the altitudes of peak production, and diffusion plays a substantial role in determining the ion density profiles. The average downward atomic ion flux for the SZA range of 90–125° is determined to be about 1.2 × 108 cm−2 s−1.  相似文献   

11.
Observations of the H2 S(0) and S(1) quadrupole lines in the four giant planets by the short-wavelength spectrometer of the Infrared Space Observatory are analyzed. These lines probe pressure levels located between 10 and 1 mbar and allow us to determine the stratospheric hydrogen para fraction for the first time. In Jupiter and Saturn, the stratospheric para fraction is close to its tropopause value. In the stratosphere of these planets as well as in Neptune’s, the para fraction presents a significant departure from thermodynamic equilibrium. This situation results from a lagged conversion between the ortho and the para states as molecular hydrogen is transported upward under the influence of turbulent eddy diffusion. In contrast, the uranian stratosphere lies close to thermodynamic equilibrium. The magnitude of the departure from thermodynamic equilibrium appears to be anti-correlated with the amount of stratospheric aerosols. To validate this assumption, we estimate the hydrogen equilibration time with a one-dimensional diffusion model for different conversion processes in the gas phase or on aerosols. The comparison between our results and the tropospheric estimates from Conrath et al. (1998, Icarus,135, 501-517) shows that paramagnetic conversion on aerosols matches the estimated tropospheric and stratospheric relaxation times in the four giant planets. In contrast, paramagnetic conversion in the gas phase can only explain the relaxation times measured in Jupiter and Saturn atmospheres. This situation provides quantitative evidence for an equilibration mechanism dominated by conversion on aerosols.  相似文献   

12.
T.A. Cassidy  R.E. Johnson 《Icarus》2010,209(2):696-703
We describe a direct simulation Monte Carlo (DSMC) model of Enceladus’ neutral cloud and compare its results to observations of OH and O orbiting Saturn. The OH and O are observed far from Enceladus (at 3.95 RS), as far out as 25 RS for O. Previous DSMC models attributed this breadth primarily to ion/neutral scattering (including charge exchange) and molecular dissociation. However, the newly reported O observations and a reinterpretation of the OH observations (Melin, H., Shemansky, D.E., Liu, X. [2009] Planet. Space Sci., 57, 1743-1753, PS&S) showed that the cloud is broader than previously thought. We conclude that the addition of neutral/neutral scattering (Farmer, A.J. [2009] Icarus, 202, 280-286), which was underestimated by previous models, brings the model results in line with the new observations. Neutral/neutral collisions primarily happen in the densest part of the cloud, near Enceladus’ orbit, but contribute to the spreading by pumping up orbital eccentricity. Based on the cloud model presented here Enceladus maybe the ultimate source of oxygen for the upper atmospheres of Titan and Saturn. We also predict that large quantities of OH, O and H2O bombard Saturn’s icy satellites.  相似文献   

13.
In this paper we present an in-depth study of the distributions of various neutral species in Titan's upper atmosphere, between 950 and 1500 km for abundant species (N2, CH4, H2) and between 950 and 1200 km for other minor species. Our analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. To untangle the overlapping cracking patterns, we adopt Singular Value Decomposition (SVD) to determine simultaneously the densities of different species. Except for N2, CH4, H2 and 40Ar (as well as their isotopes), all species present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption of these molecules or heterogeneous surface chemistry of the associated radicals on the chamber walls. In this paper, we provide both direct inbound measurements assuming ram pressure enhancement only and abundances corrected for wall adsorption/desorption based on a simple model to reproduce the observed time behavior. Among all minor species of photochemical interest, we have firm detections of C2H2, C2H4, C2H6, CH3C2H, C4H2, C6H6, CH3CN, HC3N, C2N2 and NH3 in Titan's upper atmosphere. Upper limits are given for other minor species.The globally averaged distributions of N2, CH4 and H2 are each modeled with the diffusion approximation. The N2 profile suggests an average thermospheric temperature of 151 K. The CH4 and H2 profiles constrain their fluxes to be and , referred to Titan's surface. Both fluxes are significantly higher than the Jeans escape values. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial region, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidence for the depletion of light species such as CH4. Meridional variations of some heavy species are also observed, with a trend of depletion toward the north pole. Though some of the above variations might be interpreted by either the solar-driven models or auroral-driven models, a physical scenario that reconciles all the observed horizontal/diurnal variations in a consistent way is still missing. With a careful evaluation of the effect of restricted sampling, some of the features shown in the INMS data are more likely to be observational biases.  相似文献   

14.
Long-term MGS drag density observations at 390 km reveal variations of the density with season LS (by a factor of 2) and solar activity index F10.7 (by a factor of 3 for F10.7 = 40-100). According to Forbes et al. (Forbes, J.M., Lemoine, F.G., Bruinsma, S.L., Smith, M.D., Zhang, X. [2008]. Geophys. Res. Lett. 35, L01201, doi:10.1029/2007GL031904), the variation with F10.7 reflects variations of the exospheric temperature from 192 to 284 K. However, the derived temperature range corresponds to variation of the density at 390 km by a factor of 8, far above the observed factor of 3. The recent thermospheric GCMs agree with the derived temperatures but do not prove their adequacy to the MGS densities at 390 km. A model used by Forbes et al. neglects effects of eddy diffusion, chemistry and escape on species densities above 138 km. We have made a 1D-model of neutral and ion composition at 80-400 km that treats selfconsistently chemistry and transport of species with F10.7, T, and [CO2]80 km as input parameters. Applying this model to the MGS densities at 390 km, we find variation of T from 240 to 280 K for F10.7 = 40 and 100, respectively. The results are compared with other observations and models. Temperatures from some observations and the latest models disagree with the MGS densities at low and mean solar activity. Linear fits to the exospheric temperatures are T = 122 + 2.17F10.7 for the observations, T = 131 + 1.46F10.7 for the latest models, and T = 233 + 0.54F10.7 for the MGS densities at 390 km. Maybe the observed MGS densities are overestimated near solar minimum when they are low and difficult to measure. Seasonal variations of Mars’ thermosphere corrected for the varying heliocentric distance are mostly due to the density variations in the lower and middle atmosphere and weakly affect thermospheric temperature. Nonthermal escape processes for H, D, H2, HD, and He are calculated for the solar minimum and maximum conditions.Another problem considered here refers to Mars global photochemistry in the lower and middle atmosphere. The models gave too low abundances of CO, smaller by an order of magnitude than those observed. Our current work shows that modifications in the boundary conditions proposed by Zahnle et al. (Zahnle, K., Haberle, R.M., Catling, D.C., Kasting, J.F. [2008]. J. Geophys. Res. 113, E11004, doi:10.1029/2008JE003160) are reasonable but do not help to solve the problem.  相似文献   

15.
Ionization of the atmosphere of Titan by galactic cosmic rays is a very significant process throughout the altitude range of 100 to 400 km. An approximate form of the Boltzmann equation for cosmic ray transport has been used to obtain local ionization rates. Models of both ion and neutral chemistry have been employed to compute electron and ion density profiles for three different values of the H2/CH4 abundance ratio. The peak electron density is of the order 103 cm?3. The most abundant positive ions are C2H9+ and C3H9+, while the predicted densities of the negative ions H? and CH3? are very small (<10?4 that of the positive ions). It is suggested that inclusion of the ion chemistry is important in the computation of the H and CH3 density profiles in the lower ionosphere.  相似文献   

16.
Observations of Jupiter by Cassini/CIRS, acquired during the December 2000 flyby, provide the latitudinal distribution of HCN and CO2 in Jupiter's stratosphere with unprecedented spatial resolution and coverage. Following up on a preliminary study by Kunde et al. [Kunde, V.G., and 41 colleagues, 2004. Science 305, 1582-1587], the analysis of these observations leads to two unexpected results (i) the total HCN mass in Jupiter's stratosphere in 2000 was (6.0±1.5)×1013 g, i.e., at least three times larger than measured immediately after the Shoemaker-Levy 9 (SL9) impacts in July 1994 and (ii) the latitudinal distributions of HCN and CO2 are strikingly different: while HCN exhibits a maximum at 45° S and a sharp decrease towards high Southern latitudes, the CO2 column densities peak over the South Pole. The total CO2 mass is (2.9±1.2)×1013 g. A possible cause for the HCN mass increase is its production from the photolysis of NH3, although a problem remains because, while millimeter-wave observations clearly indicate that HCN is currently restricted to submillibar (∼0.3 mbar) levels, immediate post-impact infrared observations have suggested that most of the ammonia was present in the lower stratosphere near 20 mbar. HCN appears to be a good atmospheric tracer, with negligible chemical losses. Based on 1-dimensional (latitude) transport models, the HCN distribution is best interpreted as resulting from the combination of a sharp decrease (over an order of magnitude in Kyy) of wave-induced eddy mixing poleward of 40° and an equatorward transport with velocity. The CO2 distribution was investigated by coupling the transport model with an elementary chemical model, in which CO2 is produced from the conversion of water originating either from SL9 or from auroral input. The auroral source does not appear adequate to reproduce the CO2 peak over the South Pole, as required fluxes are unrealistically high and the shape of the CO2 bulge is not properly matched. In contrast, the CO2 distribution can be fit by invoking poleward transport with a velocity and vigorous eddy mixing (). While the vertical distribution of CO2 is not measured, the combined HCN and CO2 results imply that the two species reside at different stratospheric levels. Comparing with the circulation regimes predicted by earlier radiative-dynamical models of Jupiter's stratosphere, and with inferences from the ethane and acetylene stratospheric latitudinal distribution, we suggest that CO2 lies in the middle stratosphere near or below the 5-mbar level.  相似文献   

17.
We use data from the VIMS instrument on board the Cassini spacecraft to construct high sensitivity and high spatial-resolution maps of the locations of tropospheric clouds on Titan in the late northern winter season during which the Cassini prime mission took place. These observations show that, in this season, clouds on Titan are strongly hemispherically asymmetric. Mid-latitude clouds, in particular, occur only in the southern hemisphere and have not ever been observed in the north. Such an asymmetry is in general agreement with circulation models where sub-solar surface heating controls the locations of clouds and appears in conflict with models where perennial polar hazes prevent significant summertime polar heating from affecting the circulation. The southern mid-latitude clouds appear to be distributed uniformly in longitude, in contrast to some previous observations. Southern high-latitude clouds exhibit a significant concentration, however, between about 180° and 270°E longitude. A spatially and temporally uniform cloud always appears northward of ∼50°N latitude. This cloud appears unchanged over the course of the observations, consistent with the interpretation that it is caused by continuous ethane condensation as air subsides and radiatively cools through the tropopause. The location of this cloud likely provides a direct tracer of elements of north polar atmospheric circulation, potentially allowing continuous monitoring of circulation changes as Titan passes through equinox into north polar spring and summer. We show that a similar analysis of this dataset by Rodriguez et al. (2009) contains substantial errors and should not be used.  相似文献   

18.
Michael H. Wong 《Icarus》2009,199(1):231-235
The downward transport of nonmethane hydrocarbons, condensed onto solid photochemically produced particles termed “smust,” may indeed be an important process in the methane-rich atmospheres of Jupiter and Titan. However, evidence supporting this mechanism on Jupiter [Hunten, D.M., 2008. Icarus 194, 616-622] is considerably weakened by three new considerations: the ethane mixing ratio does not increase with depth or show a 1-bar minimum, atmospheric characteristics measured by the probe throughout its descent are representative of much higher altitudes in the “normal” jovian atmosphere, and transport models must consider the lower boundary condition imposed by deep thermochemical destruction of nonmethane hydrocarbons. Additionally, ethane was not the most abundant nonmethane hydrocarbon detected by the Galileo Probe Mass Spectrometer (GPMS) near 11 bar, reinforcing previously published findings that some (if not all) of the nonmethane hydrocarbons detected by the GPMS were of instrumental rather than atmospheric origin.  相似文献   

19.
This paper reports on the results from an extensive study of all nadir-looking spectra acquired by Cassini/CIRS during the 44 flybys performed in the course of the nominal mission (2004-2008). With respect to the previous study (Coustenis, A., and 24 colleagues [2007]. Icarus 189, 35-62, on flybys TB-T10) we present here a significantly richer dataset with, in particular, more data at high northern and southern latitudes so that the abundances inferred here at these regions are more reliable. Our enhanced high-resolution dataset allows us to infer more precisely the chemical composition of Titan all over the disk. We also include improved spectroscopic data for some molecules and updated temperature profiles. The latitudinal distributions of all of the gaseous species are inferred. We furthermore test vertical distributions essentially for acetylene (C2H2) from CIRS limb-inferred data and from current General Circulation Models for Titan and compare our results on all the gaseous abundances with predictions from 1-D photochemical-radiative models to check the reliability of the chemical reactions and pathways.  相似文献   

20.
We present results from the two radio occultations of the Cassini spacecraft by Titan in 2006, which probed mid-southern latitudes. Three of the ingress and egress soundings occurred within a narrow latitude range, 31-34°S near the surface, and the fourth at 52.8°S. Temperature-altitude profiles for all four occultation soundings are presented, and compared with the results of the Voyager 1 radio occultation (Lindal, G.F., Wood, G.E., Hotz, H.B., Sweetnam, D.N., Eshleman, V.R., Tyler, G.L. [1983]. Icarus 53, 348-363), the HASI instrument on the Huygens descent probe (Fulchignoni, M. et al. [2005]. Nature 438, 785-791), and Cassini CIRS results (Flasar, F.M. et al. [2005]. Science 308, 975-978; Achterberg, R.K., Conrath, B.J., Gierasch, P.J., Flasar, F.M., Nixon, C.A. [2008b]. Icarus 194, 263-277). Sources of error in the retrieved temperature-altitude profiles are also discussed, and a major contribution is from spacecraft velocity errors in the reconstructed ephemeris. These can be reduced by using CIRS data at 300 km to make along-track adjustments of the spacecraft timing. The occultation soundings indicate that the temperatures just above the surface at 31-34°S are about 93 K, while that at 53°S is about 1 K colder. At the tropopause, the temperatures at the lower latitudes are all about 70 K, while the 53°S profile is again 1 K colder. The temperature lapse rate in the lowest 2 km for the two ingress (dawn) profiles at 31 and 33°S lie along a dry adiabat except within ∼200 m of the surface, where a small stable inversion occurs. This could be explained by turbulent mixing with low viscosity near the surface. The egress profile near 34°S shows a more complex structure in the lowest 2 km, while the egress profile at 53°S is more stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号