首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitrofanov  I. G.  Litvak  M. L.  Kozyrev  A. S.  Sanin  A. B.  Tret'yakov  V. I.  Boynton  W. V.  Shinohara  C.  Hamara  D.  Saunders  S.  Drake  D. M. 《Solar System Research》2003,37(5):366-377
We present the first results of the global neutron mapping of Mars by the Russian High-Energy Neutron Detector (HEND) onboard the US 2001 Mars Odyssey spacecraft. Global neutron maps of Mars in various spectral ranges allow the content of water ice and adsorbed and bound water in a near-surface layer of the planet 1 to 2 m in thickness to be estimated. Huge regions of permafrost with a high (several tens of percent by weight) content of water ice are shown to be present in the north and the south of Mars. The continuous observations of Mars for 12 months, from February 18, 2002, through February 8, 2003, are indicative of significant seasonal variations on Mars where the transition from northern winter to northern summer occurred.  相似文献   

2.
We jointly analyze data from the High-Energy Neutron Detector (HEND) onboard the NASA Mars Odyssey spacecraft and data from the Mars Orbiter Laser Altimeter (MOLA) onboard the Mars Global Surveyor spacecraft. The former instrument measures the content of hydrogen (in the form of H2O or OH) in the subsurface layer of soil and the latter instrument measures the surface albedo with respect to the flux of solar energy. We have checked the presence of a correlation between these two data sets in various Martian latitude bands. A significant correlation has been found between these data at latitudes poleward of 40° in the northern hemisphere and at latitudes 40°–60° in the southern hemisphere. This correlation is interpreted as evidence for the presence of stable water ice in these regions under a dry layer of soil whose thickness is determined by the condition for equilibrium between the condensation of water from the atmosphere and its sublimation when heated by solar radiation. For these regions, we have derived an empirical relation between the flux of absorbed solar radiation and the thickness of the top dry layer. It allows the burial depth of the water ice table to be predicted with a sub-kilometer resolution based on near-infrared albedo measurements. We have found no correlation in the southern hemisphere at latitudes >60°, although neutron data also suggest that water ice is present in this region under a layer of dry soil. We conclude that the thickness of the dry layer in this region does not correspond to the equilibrium condition between the water ice table and the atmosphere.  相似文献   

3.
Tetsuya Tokano 《Icarus》2003,164(1):50-78
In an effort to test and to understand the global hydrogen distribution in the shallow subsurface of Mars retrieved by the Mars Odyssey gamma-ray spectrometer, the present state and movement of water are investigated by a coupled global subsurface-atmosphere water cycle model. It was found that the observed global subsurface hydrogen distribution is largely consistent with the modeled global water cycle, so a large fraction of hydrogen is likely to exist as water, at low and mid latitudes in the form of adsorbed water. Under the present climate the water content in the shallow subsurface becomes higher in the northern hemisphere than in the southern hemisphere as a result of global water cycle, regardless of the initial water distribution in the soil or adsorptive capacity. The higher annual maximum soil temperature in the south, stronger net northward transport of atmospheric water vapor, and the emission of vapor from the northern residual polar cap in northern summer contribute to this hemispheric asymmetry. The generally higher adsorptive capacity of clay minerals in the northern plains may further increase this bias. The longitudinal inhomogeneity is caused by several factors, such as thermal inertia, adsorptive capacity, and atmospheric surface pressure. The water abundance is locally high in low thermal inertia regions (e.g., Arabia Terra) and at deep places where the surface pressure is high (e.g., Hellas); it is low in soil with a low adsorptive capacity (e.g., Tharsis) and high thermal inertia regions (e.g., Solis Planum). Most of the soil humidity near the surface at low and mid latitudes may originate from the atmosphere. The model implies that the upper soil layer should be largely ice-free because otherwise an excessive sublimation and vapor emission into the atmosphere in warm seasons would violate the observational constraints. Moreover, the more uniform latitudinal variation of the observed hydrogen abundance near the surface compared to that of deeper layers is indicative of the presence of adsorbed water instead of ground ice because the adsorbed water content does not as steeply depend on latitude as the ground ice stability. Concerning the regolith mineralogy, montmorillonite can much better account for the observed water cycle than palagonite. While the presence of permanent ground ice appears likely in the polar region below a thin layer, large seasonal cycle of phase change between pore ice and adsorbed water may be possible. Regolith adsorption/desorption is neither negligible nor crucial for the seasonal atmospheric water cycle, but the surface-atmosphere coupling is a major prerequisite for the long-term evolution of subsurface water distribution.  相似文献   

4.
A geologic analysis of 274 images acquired by the high-resolution MOC camera onboard the Mars Global Surveyor spacecraft within the Arabia Terra low neutron flux anomaly (which is indicative of an anomalously high abundance of hydrogen: up to 16 wt % of the equivalent amount of water) was performed. Correlation between the enhanced abundance of equivalent water with the presence of dust on the surface was found. Since dust plays a key role in condensation of water from the atmosphere, we suppose that the anomalies could result from the retention of atmospheric moisture. To analyze this suggestion, we performed a theoretical modeling that allowed us to map the planetary-scale distributions of several meteorological parameters responsible for the atmospheric moisture condensation. Two antipodal regions coinciding rather well with the Arabia Terra anomaly and the geographically antipodal anomaly southwest of Olympus Mons were found in the maps. This suggests that the anomalies are rather recent than ancient formations. They were probably formed by a sink of moisture from the atmosphere in the areas where present meteorological conditions support this sink. Geological parameters, primarily the presence of dust, only promote this process. We cannot exclude the possibility that the Martian cryosphere, rather than the atmosphere, supplied the studied anomalies with moisture during their formation: the thermodynamic conditions in the anomaly areas could block the moisture flux from the Martian interior in the upper regolith layer. The moisture coming from the atmosphere or from the interior is likely held as chemically bound water entering into the structure of water-bearing minerals (probably, hydrated magnesium sulfates) directly from the vapor; or the moisture precipitates as frost, penetrates into microfissures, and then is bound in minerals. Probably, another geologic factor—the magnesium sulfate abundance—works in the Arabia Terra anomaly.  相似文献   

5.
Most (~90%) of the estimated original volume of outgassed water on Mars cannot be satisfactorily accounted for by exospheric escape or storage in the atmosphere, as frost, or in the permanent north polar ice cap. The balance may be stored as ground ice in the Martian cryosphere, a zone of permanently frozen ground that is protected from the atmosphere by a debris cover. Ground ice can exist throughout the entire cryosphere, but it need not fill it. If the ground ice does fill the cryosphere, then excess water can exist in a confined aquifer. The theoretical distribution of ground ice can be tested by identification of forms on the Martian surface that may be related to the presence of subsurface ice. The observed features that are most likely to reflect ground ice are thermokarst-like pits and debris flows. Landforms with ambivalent origins include polygonally patterned ground, lobate ejecta blankets, craters with central pits, and curvilinear features. The most persuasive morphologic evidence for ground ice is thermokarst pits and debris flows; the thermokarst pits are primarily located in the volcanic regions of Tharsis and Elysium. The association of ice-related features with these volcanic areas suggests that these forms are not directly latitude dependent. Activation by orbital variations could produce periodic, multiple episodes of melting that are dependent upon latitude. The presence of ice-related features in both hemispheres and the equatorial region of Mars indicates that ground ice may be—or have been—present over the entire planet, as predicted by the cryosphere model.  相似文献   

6.
Benton C. Clark 《Icarus》1978,34(3):645-665
Converging lines of evidence suggest that a significant portion of the Martian surface fines may consist of salts and smectite clays. Salts can form stoichiometric hydrates as well as eutectic solutions with depressed freezing points; clays contain bound water of constitution and adsorb significant quantities of water from the vapor phase. The formation of ice may be suppressed by these minerals in some regions on Mars, and their presence in abundance would imply important consequences for atmospheric and geologic processes and the prospects for exobiology.  相似文献   

7.
8.
The Mars Orbiter Camera onboard the Mars Global Surveyor has obtained several images of polygonal features in the southern polar region. In images taken during the end of the southern spring, when the surrounding surface is free of the seasonal frost, CO2 ice still appears to be present within the polygonal troughs. In Earth's polar regions, polygons such as these are indicative of water ice in the ground below. We analyzed the seasonal evolution of the thermal state and the CO2 content of these features. Our 2-D model includes condensation and sublimation of the CO2 ice, a self consistent treatment of the variations of the thermal properties of the regolith, and the seasonal variations of the local atmospheric pressure which we take from the results of a general circulation model. We find that the residence time of seasonal CO2 ice in troughs depends not only on atmospheric opacity and albedo of the CO2 ice, but also and most significantly on the distribution of water ice in the regolith. Optical properties of the atmosphere and surface CO2 ice can be independently obtained from observations. To date this is not true about the distribution of water ice below the surface. Our analysis quantifies the dependence of the seasonal cycle of the CO2 ice within the troughs on the assumed distribution of the water ice below the surface. We show that presence of water ice in the ground at a depth smaller than the depth of the troughs reduces winter condensation rate of CO2 ice. This is due to higher heat flux conducted from the water ice rich regolith toward the facets of the troughs.  相似文献   

9.
Analysis of the distribution of the epithermal and fast neutron fluxes from the Martian surface within the ±60° latitude zone measured by the High-Energy Neutron Detector (HEND) from mid-February through mid-June 2002 has revealed regional neutron-flux variations outside the zones of climatic effects, which appear to be attributable to the presence of chemically bound water. With the exception of the epithermal neutron fluxes in Arabia and southwest of Olympus Mons (Medusae Fossae), these variations show no correlation with the geologic structure of the terrain at the level of global geologic maps. The lack of such a correlation probably implies that to the formation depth of the epithermal neutron flux (1–2 m), let alone the fast neutron flux (20–30 cm), much of Mars is covered by a surface material that bears little relation in composition to local bedrocks. Clearly, this is an aeolian cover whose fine-grain component was mixed by dust storms in the geologic time on the scale of large regions. The decrease in the flux of epithermal neutrons in Arabia and southwest of Olympus Mons (Medusae Fossae) appears to be attributable to an enhanced concentration of materials containing chemically bound water (clay minerals, palagonite, hydroxides, and hydrosalts) in the surface layers of these regions.  相似文献   

10.
Abstract— Mars Global Surveyor (MGS) and Mars Odyssey data are being used to revise the Catalog of Large Martian Impact Craters. Analysis of data in the revised catalog provides new details on the distribution and morphologic details of 6795 impact craters in the northern hemisphere of Mars. This report focuses on the ejecta morphologies and central pit characteristics of these craters. The results indicate that single‐layer ejecta (SLE) morphology is most consistent with impact into an ice‐rich target. Double‐layer ejecta (DLE) and multiple‐layer ejecta (MLE) craters also likely form in volatile‐rich materials, but the interaction of the ejecta curtain and target‐produced vapor with the thin Martian atmosphere may be responsible for the large runout distances of these ejecta. Pancake craters appear to be a modified form of double‐layer craters where the thin outer layer has been destroyed or is unobservable at present resolutions. Pedestal craters are proposed to form in an icerich mantle deposited during high obliquity periods from which the ice has subsequently sublimated. Central pits likely form by the release of vapor produced by impact into ice‐soil mixed targets. Therefore, results from the present study are consistent with target volatiles playing a dominant role in the formation of crater morphologies found in the Martian northern hemisphere.  相似文献   

11.
12.
There is increasing evidence that the nature of extended dark features on slopes of Martian craters and uplands is related to existing sources of liquid water located on these slopes and to confined water flows rather than to the movement of large masses of dry sand (dust) or rock falls. Images acquired by the Mars Global Surveyor Mars Orbiter Camera at spatial resolutions of a few meters per pixel make it possible to distinguish such objects. The availability of big reserves of ground ice on Mars and conditions for the local conversion of ice to the liquid phase is now universally accepted. Although the presence of liquid water on the Martian surface is usually thought to be impossible because of low pressures and low mean temperatures, there is a sufficient number of lowlands on Mars where pressure exceeds the critical value required for the existence of liquid water. The extended narrow gullies on slopes with tributaries were formed, as it is supposed, by water streams. The structure of gullies has an unusual appearance, reverse of that of mountain rivers on Earth: gullies are broad in the upper part of a slope, narrow downslope, end with a thin stream, and disappear at the valley or crater floor. Both tributaries and the major channel seem to be directed uphill. This paper provides a simple explanation of this apparent paradox. Under low-temperature conditions, the conversion of liquid water to the ice phase should be considered in dynamics: the water released by the source comes in contact with a cold ground, partly soaks in ground, and freezes, forming an ice bed along which the stream moves further and continues to interact with ground. The distance from the source at which water completely disappears depends on the initial temperature of the source, its abundance, and the ground temperature. The apparent paradox is explained by the interaction of a cooling stream with a very cold ground. As regards the side structures, they are not tributaries but branches, which rapidly freeze. This paper also shows that a high source debit and/or sufficiently high ambient temperature promote the formation on the valley floor of a small pond that accumulates water flows. The walls of this pond consist of frozen ground and ice. Objects that might be small water reservoirs are detected in some new images of Mars. High concentration of sources of groundwater in two equatorial regions of Mars may serve as a useful indication to the location of places promising for searching traces of life on this planet.  相似文献   

13.
The seasonal variation of neutron emissions from Mars in different spectral intervals measured by the HEND neutron detector for the entire Martian year are analyzed. Based on these data, the spatial variations of the neutron emissions from the planet are globally mapped as a function of season, and the dynamics of seasonal variation of neutron fluxes with different energies is analyzed in detail. No differences were found between seasonal regimes of neutron fluxes in different energy ranges in the southern hemisphere of Mars, while the regime of fast neutrons (with higher energies) during the northern winter strongly differs from that during the southern winter. In winter (L s = 270°–330°), the fast neutron fluxes are noticeably reduced in the northern hemisphere (along with the consecutive thickening of the seasonal cap of solid carbon dioxide). This provides evidence of a temporary increase in the water content in the effective layer of neutron generation. According to the obtained estimates, the observed reduction of the flux of fast neutrons in the effective layer corresponds to an increase in the water abundance of up to 5% in the seasonal polar cap (70°–90°N), about 3% at mid-latitudes, and from 1.5 to 2% at low latitudes. The freezing out of atmospheric water at the planetary surface (at middle and high latitudes) and the hydration of salt minerals composing the Martian soil are considered as the main processes responsible for the temporary increase in the water content in the soil and upper layer of the seasonal polar cap. The meridional atmospheric transport of water vapor from the summer southern to the winter northern hemisphere within the Hadley circulation cell is a basic process that delivers water to the subsurface soil layer and ensures the observed scale of the seasonal increase in water abundance. In the summer northern hemisphere, the similar Hadley circulation cell transports mainly dry air masses to the winter southern hemisphere. The point is that the water vapor becomes saturated at lower heights during aphelion, and the bulk of the atmospheric water mass is captured in the near-equatorial cloudy belt and, thus, is only weakly transferred to the southern hemisphere. This phenomenon, known as the Clancy effect, was suggested by Clancy et al. (1996) as a basic mechanism for the explanation of the interhemispheric asymmetry of water storage in permanent polar caps. The asymmetry of seasonal meridional circulation of the Martian atmosphere seems to be another factor determining the asymmetry of the seasonal water redistribution in the “atmosphere-regolith-seasonal polar caps” system, found in the peculiarities of the seasonal regime of the neutron emission of Mars.  相似文献   

14.
David Wallace  Carl Sagan 《Icarus》1979,39(3):385-400
The evaporation rate of water ice on the surface of a planet with an atmosphere involves an equilibrium between solar heating and radiative and evaporative cooling of the ice layer. The thickness of the ice is governed principally by the solar flux which penetrates the ice layer and then is conducted back to the surface. These calculations differ from those of Lingenfelter et al. [(1968) Science161, 266–269] for putative lunar channels in including the effect of the atmosphere. Evaporation from the surface is governed by two physical phenomena: wind and free convection. In the former case, water vapor diffuses from the surface of the ice through a lamonar boundary layer and then is carried away by eddy diffusion above, provided by the wind. The latter case, in the absence of wind, is similar, except that the eddy diffusion is caused by the lower density of water vapor than the Martian atmosphere. For mean Martian insolations the evaporation rate above the ice is ~ 10?8 g cm?2 sec?1. Thus, even under present Martian conditions a flowing channel of liquid water will be covered with ice which evaporates sufficiently slowly that the water below can flow for hundreds of kilometers even with quite modest discharges. Evaporation rates are calculated for a wide range of frictional velocities, atmospheric pressures, and insolations and it seems clear that at least some subset of observed Martian channels may have formed as ice-choked rivers. Typical equilibrium thicknesses of such ice covers are ~ 10 to 30 m; typical surface temperatures are 210 to 235°K. Ice-covered channels or lakes on Mars today may be of substantial biological interest. Ice is a sufficiently poor conductor of heat that sunlight which penetrates it can cause melting to a depth of several meters or more. Because the obliquity of Mars can vary up to some 35°, the increased polar heating at such times seems able to cause subsurface melting of the ice caps to a depth which corresponds to the observed lamina thickness and may be responsible for the morphology of these polar features.  相似文献   

15.
A suite of four feature types in a ∼20 km2 area near 10° N, 204° W in Athabasca Valles is interpreted to have resulted from near-surface ground ice. These features include mounds, conical forms with rimmed summit depressions, flatter irregularly-shaped forms with raised rims, and polygonal terrain. Based on morphology, size, and analogy to terrestrial ground ice forms, these Athabascan features are interpreted as pingos, collapsing pingos, pingo scars, and thermal contraction polygons, respectively. Thermal Infrared Mapping Spectrometer (THEMIS) data and geological features in the area are consistent with a sedimentary substrate underlying these features. These observations lead us to favor a ground ice interpretation, although we do not rule out volcanic and especially glaciofluvial hypotheses. The hypothesized ground ice that formed the mounds and rimmed features may have been emplaced via the deposition of saturated sediment during flooding; an alternative scenario invokes magmatically cycled groundwater. The ground ice implicit in the hypothesized thermal contraction polygons may have derived either from this flooding/ground water, or from atmospheric water vapor. The lack of obvious flood modification of the mounds and rimmed features indicates that they formed after the most recent flood inundated the area. Analogy with terrestrial pingos suggests that ground ice may be still extant within the positive relief mounds. As the water that flooded down Athabasca Valles emerged via a volcanotectonic fissure from a deep aquifer, any extant pingo ice may contain evidence of a deep subsurface biosphere.  相似文献   

16.
We examine the response of Martian climate to changes in solar energy deposition caused by variations of the Martian orbit and obliquity. We systematically investigate the seasonal cycles of carbon dioxide, water, and dust to provide a complete picture of the climate for various orbital configurations. We find that at low obliquity (15°) the atmospheric pressure will fall below 1 mbar; dust storms will cease; thick permanent CO2 caps will form; the regolith will release CO2; and H2O polar ice sheets will develop as the permafrost boundaries move poleward. At high obliquity (35°) the annual average polar temperature will increase by about 10°K, slightly desorbing the polar regolith and causing the atmospheric pressure to increase by not more than 10 to 20 mbar. Summer polar ground temperatures as high as 273°K will occur. Water ice caps will be unstable and may disappear as the equilibrium permafrost boundary moves equatorward. However, at high eccentricity, polar ice sheets will be favored at one pole over the other. At high obliquity dust storms may occur during summers in both hemispheres, independent of the eccentricity cycle. Eccentricity and longitude of perihelion are most significant at modest obliquity (25°). At high eccentricity and when the longitude of perihelion is close to the location of solstice hemispherical asymmetry in dust-storm generation and in polar ice extent and albedo will occur.The systematic examination of the relation of climate and planetary orbit provides a new theory for the formation of the polar laminae. The terraced structure of the polar laminae originates when eccentricity and/or obliquity variations begin to drive water ice off the dusty permanent H2O polar caps. Then a thin (meters) layer of consolidated dust forms on top of a dirty, slightly thicker (tens of meters) ice sheet and the composite is preserved as a layer of laminae composed predominately of water ice. Because of insolation variation on slopes, a series of poleward- and equatorward-facing scarps are formed where the edges of the laminae are exposed. Independently of orbital variations, these scarps propagate poleward both by erosion of the equatorward slopes and by deposition on the poleward slopes. Scarp propagation resurfaces and recycles the laminae forming the distinctive spiral bands of terraces observed and provides a supply of water to form new permanent ice caps. The polar laminae boundary marks the furthest eqautorward extension of the permanent H2O caps as the orbit varies. The polar debris boundary marks the furthest equatorward extension of the annual CO2 caps as the orbit varies.The Martian regolith is now a significant geochemical sink for carbon dioxide. CO2 has been irreversibly removed from the atmosphere by carbonate formation. CO2 has also benn removed by regolith adsorption. Polar temperature increases caused by orbital variations are not great enough  相似文献   

17.
Throughout the northern equatorial region of Mars, extensive areas have been uniformly stripped, roughly to a constant depth. These terrains vary widely in their relative ages. A model is described here to explain this phenomenon as reflecting the vertical distribution of H2O liquid and ice in the crust. Under present conditions the Martian equatorial regions are stratified in terms of the stability of water ice and liquid water. This arises because the temperature of the upper 1 or 2 km is below the melting point of ice and liquid is stable only at greater depth. It is suggested here that during planetary outgassing earlier in Martian history H2O was injected into the upper few kilometers of the crust by subsurface and surface volcanic eruption and lateral migration of the liquid and vapor. As a result, a discontinuity in the physical state of materials developed in the Martian crust coincident with the depth of H2O liquid-ice phase boundary. Material above the boundary remained pristine; material below underwent diagenetic alteration and cementation. Subsequently, sections of the ice-laden zone were erosionally stripped by processes including eolian deflation, gravitational slump and collapse, and fluvial transport due to geothermal heating and melting of the ice. The youngest plains which display this uniform stripping may provide a minimum stratigraphic age for the major period of outgassing of the planet. Viking results suggest that the total amount of H2O outgassed is less than half that required to fill the ice layer, hence any residual liquid eventually found itself in the upper permafrost zone or stored in the polar regions. Erosion stopped at the old liquid-ice interface due to increased resistance of subjacent material and/or because melting of ice was required to mobilize the debris. Water ice may remain in uneroded regions, the overburden of debris preventing its escape to the atmosphere. Numerous morphological examples shown in Viking and Mariner 9 images suggest interaction of impact, volcanic, and gravitational processes with the ice-laden layer. Finally, volcanic eruptions into ice produces a highly oxidized friable amorphous rock, palagonite. Based on spectral reflectance properties, these materials may provide the best analog to Martian surface materials. They are easily eroded, providing vast amounts of eolian debris, and have been suggested (Toulmin et al., 1977) as possible source rocks for the materials observed at the Viking landing sites.  相似文献   

18.
Analyses of Martian surface soil by Viking and Earth-based telescopes have been interpreted as indicating a regolith dominated by the weathering products of mafic or ultramafic rocks. Basaltic glass has previously been proposed as a more likely precursor than crystalline rock, given the low efficiency of surface weathering under present Martian conditions. On Earth large volumes of basaltic glass formed by quenching of magma by water. A similar interaction, between magma and ground ice, may have been a common occurrence on Mars. On the basis of this scenario palagonite, the alteration product of basaltic sideromelane glass, was studied as a possible analog to Martian soil. Samples from Iceland, Alaska, Antarctica, Hawaii, and the desert of New Mexico and Mexico were examined by optical and scanning electron microscopy, electron microprobe analysis, X-ray diffraction, spectrophotometry, and magnetic and thermogravimetric analysis. We suggest that palagonite is a good analog to the surface soil of Mars in chemical composition, particle size, spectral signature, and magnetic properties. Our model for the formation of fine-grained Martian surface soil begins with eruptions of basaltic magma through ground ice, forming deposits of glassy tuff. Individual glass shards are then altered by low-temperature hydrothermal systems to palagonitic material. Dehydration and aeolian abrasion strip the alteration rinds from the glass, and wind storms distribute the silt-sized palagonitic fragments in a planet-wide deposit.  相似文献   

19.
Current evidence indicates that the Martian surface is abundant with water presently in the form of ice, while the atmosphere was at one time more massive with a past surface pressure of as much as 1 atm of CO2. In an attempt to understand the Martian paleoclimate, we have modeled a past CO2H2O greenhouse and find global temperatures which are consistent with an earlier presence of liquid surface water, a finding which agrees with the extensive evidence for past fluvial erosion. An important aspect of the CO2H2O greenhouse model is the detailed inclusion of CO2 hot bands. For a surface pressure of 1 atm of CO2, the present greenhouse model predicts a global mean surface temperature of 294°K, but if the hot bands are excluded, a surface temperature of only 250°K is achieved.  相似文献   

20.
The results of the analysis of the spectral observations of Mars carried out with the OMEGA spectrometer onboard the Mars Express spacecraft are presented. The data from one of the spectrometer’s channels working in the near-IR spectral range (0.93–2.69 μm) were analyzed. This range includes the characteristic absorption bands of both condensed water phases (ice and frost) and bound water contained in hydrated minerals of the Martial soil. From the 1.93-μm band indicating the presence of these minerals, global maps of the bound-water index have been made. They show a noticeable latitude dependence of the index: the largest values refer to high latitudes (>60°), while they gradually diminish toward the equator. Seasonal variations of the spectral index obtained by the 1.93-μm band are connected with the hydration-dehydration processes occurring in hydrogenous minerals when the temperature of the soil and the relative humidity in the near-surface atmospheric layer are changing. The evolution of the spectral absorption bands of water ice (1.2 and 1.5 μm) dependent on the season testifies to the changes in the microstructure of the surface layer in the North ploar cap caused by the sublimate re-crystallization processes in the ice sheet. The spatial pattern of the location of the areas where the microstructure most quickly grows could be formed under the influence of the stationary atmospheric waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号