首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
 During the 1944 eruption of Vesuvius a sudden change occurred in the dynamics of the eruptive events, linked to variations in magma composition. K-phonotephritic magmas were erupted during the effusive phase and the first lava fountain, whereas the emission of strongly porphyritic K-tephrites took place during the more intense fountain. Melt inclusion compositions (major and volatile elements) highlight that the magmas feeding the eruption underwent differentiation at different pressures. The K-tephritic volatile-rich melts (up to 3 wt.% H2O, 3000 ppm CO2, and 0.55 wt.% Cl) evolved to reach K-phonotephritic compositions by crystallization of diopside and forsteritic olivine at total fluid pressure higher than 300 MPa. These magmas fed a very shallow reservoir. The low-pressure differentiation of the volatile-poor K-phonotephritic magmas (H2O<1 wt.%) involved mixing, open-system degassing, and crystallization of leucite, salite, and plagioclase. The eruption was triggered by intrusion of a volatile-rich magma batch that rose from a depth of 11–22 km into the shallow magma chamber. The first phase of the eruption represents the partial emptying of the shallow reservoir, the top of which is within the volcanic edifice. The newly arrived magma mixed with that resident in the shallow reservoir and forced the transition from the effusive to the lava fountain phase of the eruption. Received: 14 September 1998 / Accepted: 10 January 1999  相似文献   

2.
In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837–845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634–647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15–30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final scenario are highlighted. The results show the high sensitivity of hazard combinations in time and space distribution and address how to mitigate building vulnerability to subsequent eruptive phenomena [Baxter, P., Spence, R., Zuccaro, G., 2008-this issue. Risk mitigation and emergency measures at Vesuvius].  相似文献   

3.
Reliable forecasting of the next eruption at Vesuvius is the main scientific factor in defining effective strategies to reduce volcanic risk in one of the most dangerous volcanic areas of the world. In this paper, we apply a recently developed probabilistic code for eruption forecasting to new and independent historical data related to the pre-eruptive phase of the 1631 eruption. The results obtained point out three main issues: (1) the importance of “cold” historical data (according to Guidoboni 2008) related to pre-eruptive phases for evaluating forecasting tools and possibly refining them; (2) the BET_EF code implemented for Vesuvius would have forecasted the 1631 eruption satisfactorily, marking different stages of the pre-eruptive phase; (3) the code shows that pre-eruptive signals that significantly increase the probability of eruption were likely detected more than 2 months before the event.  相似文献   

4.
During the period 1631–1944, Vesuvius was in persistent activity with alternating mild strombolian explosions, quiet effusive eruptions, and violent strombolian eruptions. The major difference between the predominant style of activity and the violent strombolian stages is the effusion rate. The lava effusion rate during major eruptions was in the range 20–100 m3/s, higher than during mild activity and quiet effusion (0.1–1 m3/s). The products erupted during the mild activity and major paroxysms have different degree of crystallization. Highly porphyritic lava flows are slowly erupted during years-long period of mild activity. This activity is fed by a magma accumulating at shallow depth within the volcanic edifice. Conversely, during the major paroxysms, a fast lava flow precedes the eruption of a volatile-rich, crystal-poor magma. We show that the more energetic eruptions are fed by episodic, multiple arrival of discrete batches of magma rising faster and not degassing during the ascent. The rapidly ascending magma pushes up the liquid residing in the shallow reservoir and eventually reaches the surface with its full complement of volatiles, producing kilometer-high lava fountains. Rapid drainage of the shallow reservoir occasionally caused small caldera collapses. The major eruptions act to unplug the upper part of the feeding system, erupting the cooling and crystallizing magma. This pattern of activity lasted for 313 y, but with a progressive decrease in the number of more energetic eruptions. As a consequence, a cooling plug blocked the volcano until it eventually prevented the eruption of new magma. The yearly probability of having at least one violent strombolian eruption has decreased from 0.12 to 0.10 from 1944 to 2007, but episodic seismic crises since 1979 may be indicative of new episodic intrusions of magma batches.  相似文献   

5.
Pre-eruptive conditions and degassing processes of the AD 79 plinian eruption of Mt. Vesuvius are constrained by systematic F and Cl measurements in melt inclusions and matrix glass of pumice clasts from a complete sequence of the pumice-fallout deposits. The entire ‘white pumice’ (WP) magma and the upper part of the ‘grey pumice’ (GP) magma were saturated relative to sub-critical fluids (a Cl-rich H2O vapour phase and a brine), with a Cl melt content buffered at ~ 5300 ppm, and a mean H2O content of ~ 5%. The majority of the GP magma was not fluid-saturated. From these results it can be estimated that the WP magma chamber had a low vertical extent (< 500 m) and was located at a depth of ~ 7.5 km while the GP magma reservoir was located just beneath the WP one, but its vertical extent cannot be constrained. This is approximately two times deeper than previous estimates. H2O degassing during the WP eruption followed a typical closed-system evolution, whereas GP clasts followed a more complex degassing path. Contrary to H2O, Cl was not efficiently degassed during the plinian phase of the eruption.

This study shows that F and Cl behave as incompatible elements in fluid-undersaturated phonolitic melts. H2O saturation is necessary for a significant partitioning of Cl into the fluid phase. However, Cl cannot be extracted in significant quantity from phonolitic melts during rapid H2O degassing, e.g. during plinian eruptions, due to kinetics effects. Halogen contents are better preserved in volcanic glass (melt inclusions or matrix glass) than H2O, therefore the combined analysis of both volatile species is required for reliable determination of pre-eruptive conditions and syn-eruptive degassing processes in magmas stored at shallow depths.  相似文献   


6.
The 79 AD eruption of Vesuvius included 8 eruption units (EU1–8) and several complex transitions in eruptive style. This study focuses on two important transitions: (1) the abrupt change from white to gray pumice during the Plinian phase of the eruption (EU2 to EU3) and (2) the shift from sustained Plinian activity to the onset of caldera collapse (EU3 to EU4). Quantification of the textural features within individual pumice clasts reveals important changes in both the vesicles and groundmass crystals across each transition boundary. Clasts from the white Plinian fall deposit (EU2) present a simple story of decompression-driven crystallization followed by continuous bubble nucleation, growth and coalescence in the eruptive conduit. In contrast, pumices from the overlying gray Plinian fall deposit (EU3) are heterogeneous and show a wide range in both bubble and crystal textures. Extensive bubble growth, coalescence, and the onset of bubble collapse in pumices at the base of EU3 suggest that the early EU3 magma experienced protracted vesiculation that began during eruption of the EU2 phase and was modified by the physical effects of syn-eruptive mingling-mixing. Pumice clasts from higher in EU3 show higher bubble and crystal number densities and less evidence of bubble collapse, textural features that are interpreted to reflect more thorough mixing of two magmas by this stage of the eruption, with consequent increases in both vesiculation and crystallization. Pumice clasts from a short-lived, high column at the onset of caldera collapse (EU4) continue the trend of increasing crystallization (enhanced by mixing) but, unexpectedly, the melt in these clasts is more vesicular than in EU3 and, in the extreme, can be classified as reticulite. We suggest that the high melt vesicularity of EU4 reflects strong decompression following the partial collapse of the magma chamber.Editorial responsibility: D.B. Dingwell  相似文献   

7.
The report on the 1906 eruption of Vesuvius by Lieutenant-Colonel Charles Delmé-Radcliffe was reproduced with comments in a 2007 edition of this journal. This article supplies additional details about this report, explaining that the report is, in fact, incomplete and why this is the case. It also corrects some of the comments about the accessibility and previous publication of this report made in the 2007 article.  相似文献   

8.
A simple semi-analytical model for ash-fall deposit was applied to reconstruct the tephra deposits of the sub-Plinian 472 AD eruption of Vesuvius, Italy, which is of the scale of the reference eruptive scenario for the emergency planning, at Vesuvius. Applying a novel least-squares method, the bulk grain-size distribution, the total mass, and the eruption column height were obtained by fitting the computed ground load and granulometries with the observed ones. The analysis of the effect of three different weighting factors in the minimization procedure was also performed. Results showed that the statistical weighting factor produced the minimum bias. The best correlation between calculated and measured deposit was found, even though the quantity of the input data was not very high, as it commonly occurs for several ancient eruptions. Model results were also in agreement with estimations provided by other independent methods.  相似文献   

9.
During the 1944 eruption of Vesuvius different types of xenoliths were ejected. They represent fragments of the walls of a low volume (<0.5 km3) shallow (3–4 km depth) magma chamber. The study of these xenoliths enables us to estimate the amount of contamination occurring at the boundary of a high-T alkaline magma chamber hosted in carbonate rocks. The process of contamination of the magma by carbonates can be modelled, using isotopic and chemical data, as a mixing between magma and marbles. Mass exchanges occur at the boundary between the crystallizing magma and marble wall rocks, where endoskarn forms. The contamination of the solidification front of the chamber is very limited. The solidification front and the skarn shell effectively isolate the interior of the magma chamber from new inputs of contaminants from the carbonate wall rocks. Therefore, the main volume of magma, hosted in the magma chamber, did not undergo any significant mass exchange with the wall rocks.  相似文献   

10.
Historical sources have recorded earthquake shocks, their effects and difficulties that local inhabitants experienced before the AD 79 Pompeii eruption. Archaeological studies pointed out the effects of such seismicity, and have also evidenced that several water crises were occurring at Pompeii in that period. Indeed numerous sources show that, at the time of eruption, and probably some time before, the civic aqueduct, having ceased to be supplied by the regional one, was out of order and that a new one was being built. Since Roman aqueducts were usually built with a recommended minimum mean slope of 20 cm/km and Pompeii's aqueduct sloped from the nearby Apennines toward the town, this slope could have been easily cancelled by uplift that occurred in the area even if this was only moderate.  相似文献   

11.
Volcanic ash fallout subsequent to a possible renewal of the Vesuvius activity represents a serious threat to the highly urbanized area around the volcano. In order to assess the relative hazard we consider three different possible scenarios such as those following Plinian, Sub-Plinian, and violent Strombolian eruptions. Reference eruptions for each scenario are similar to the 79 AD (Pompeii), the 1631 AD (or 472 AD) and the 1944 AD Vesuvius events, respectively. Fallout deposits for the first two scenarios are modeled using HAZMAP, a model based on a semi-analytical solution of the 2D advection–diffusion–sedimentation equation. In contrast, fallout following a violent Strombolian event is modeled by means of FALL3D, a numerical model based on the solution of the full 3D advection–diffusion–sedimentation equation which is valid also within the atmospheric boundary layer. Inputs for models are total erupted mass, eruption column height, bulk grain-size, bulk component distribution, and a statistical set of wind profiles obtained by the NCEP/NCAR re-analysis. We computed ground load probability maps for different ash loadings. In the case of a Sub-Plinian scenario, the most representative tephra loading maps in 16 cardinal directions were also calculated. The probability maps obtained for the different scenarios are aimed to give support to the risk mitigation strategies.  相似文献   

12.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

13.
Seismogenic stress orientations are estimated in the lithosphere of Sicily by inversion of 131 local earthquake focal mechanisms (FMs) selected from the literature. An average misfit F = 14.5° between stress tensor and FMs indicates that the entire set of earthquakes is generated by a highly heterogeneous stress field. Detailed analysis of stress tensors and related earthquake misfits obtained for tens of subsets based on spatial separation of data allowed us to identify two main stress domains in the study region: (i) a compressional domain, including Etna, western Sicily and the southern Tyrrhenian sea offshore Sicily, where the σ1 orientation roughly changes from NW–SE in the Etna area and western Sicily to NNE–SSW at the northeastern edge of the domain (Eolian Islands) and (ii) an extensional domain in northeastern Sicily between the Eolian Islands and Etna, where σ3 is oriented analogously to previously estimated in the easterly confining extensional area of the Messina Straits. General agreement is found between this stress pattern and the GPS crustal displacement vectors reported in the most recent literature for the study region. Moreover, stress inversion enables us to locate the extensional domain more accurately than the presently available GPS data. Finally, the stress orientations estimated in the southern and western sectors of the study area (Etna and western Sicily on and offshore) match well with the displacement fields predicted for Sicily by large-scale models of plate motion, conversely a mismatch is observed in the northeastern sector (Eolian Islands and northeastern Sicily). We suggest that the joint action of Africa–Eurasia convergence and Ionian subduction trench retreat (rollback of the subducting slab) may explain the stress pattern detected in Sicily in the present study. Work for computation of a finite-element regional geodynamic model based on geophysical and geological data collected over the last few years has recently started with the purpose of quantitatively checking this hypothesis.  相似文献   

14.
A theoretical thermal model has been worked out for the magma reservoir that would have fed the two last Plinian eruptions of Mt. Vesuvius (Barberi et al., 1981). The effect of convective motions is discussed, and it is shown that the size of convective cells and the efficiency of the process in smoothing out temperature gradients evolves in time due to the progressive viscosity increase produced by the heat lost by conductive heat transfer through the host rock. Although convection will be important throughout the history of the reservoir, until very high viscosities are reached, the pure conductive model seems to account satisfactorily for the cumulative heat loss by the reservoir. Gravitative crystal settling can occur, even in presence of convective motions, mostly during several hundred years after the magma emplacement when viscosity is not yet increased to high values.  相似文献   

15.
Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallaj?kull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38?%) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7?days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2?mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallaj?kull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment can help those who devise procedures to minimise the impact of these long-lasting low-intensity volcanic events on civil aviation.  相似文献   

16.
17.
The poissonian and non-fractal characters generally exhibited by the most intense natural events do not allow the application of the current exponential and power law long-term hazard predictive models, and have suggested searching for a new model. This has been set up also taking into account that the random sequence (representing disorder) of these events is linked to the duration of the stationary small ones (representing order). The model, proposed in terms of the orbit of a simple non-linear hazard function, simulates the large eruptions of Vesuvius quite well and permits estimation of the next subplinian eruption to occur there around A.D. 2030. A short range forecasting model based on the tidal triggering is also provided and discussed. When large tidally triggered M2 term in the earthquakes at Vesuvius become significant at the 0.01 level the proposed long-term hazard model will yield a more accurate estimate of the above prediction.  相似文献   

18.
Stelling  P.  Beget  J.  Nye  C.  Gardner  J.  Devine  J.  George  R. 《Bulletin of Volcanology》2002,64(8):548-561
Bulletin of Volcanology - Shishaldin Volcano erupted repeatedly during April and May 1999, with major eruptive events on 19 April and 23 April. Tephra deposits &;gt;20&;nbsp;cm thick were...  相似文献   

19.
The Onano explosive eruption of the Latera Volcanic Complex (Vulsini Volcanoes, Quaternary potassic Roman Comagmatic Region, Italy) provides an interesting example of multiple changes of eruptive style that were concomitant with a late phase of collapse of the polygenetic Latera Caldera. This paper reports a reconstruction of the event based on field analysis, laboratory studies of grain size and density of juvenile clasts, and re-interpretation of available subsurface geology data. The Onano eruption took place in a structurally weak area, corresponding to a carbonate substrate high bordered by the pre-existing Latera caldera and Bolsena volcano-tectonic depression, which controlled the ascent and eruption of a shoshonitic-phonotephritic magma through intersecting rim fault systems. Temporal changes of magma vesiculation, fragmentation and discharge rate, and consequent eruptive dynamics, were strongly controlled by pressure evolution in the magma chamber and changing vent geometry. Initially, pumice-rich pyroclastic flows were emplaced, followed by spatter- and lithic-rich flows and fallout from energetic fire-fountaining. The decline of magma pressure due to the partial evacuation of the magma chamber induced trapdoor collapse of the chamber roof, which involved part of the pre-existing caldera and external volcano slopes and eventually led to the present-day caldera. The widening of the vent system and the emplacement of the main pyroclastic flow and associated co-ignimbrite lag breccia marked the eruption climax. A sudden drop of the confining pressure, which is attributed to a pseudo-rigid behaviour of the magma chamber wall rocks during a phase of rapid magma drainage, led to extensive magma vesiculation and fragmentation. The disruption of the magma chamber roof and waning magma pressure in the late eruption stage favoured the explosive interaction of residual magma with groundwater from the confined carbonate aquifer. Pulsating hydrostatic and magma pressures produced alternating hydromagmatic pyroclastic surges, strombolian fallout and spatter flows.  相似文献   

20.
Fifteen seismic reflection lines from AGIP surveys, in and around the Campanian Plain and Mt. Somma–Vesuvius (south Italy) have been interpreted. The attention has been focused to the horizon pertinent to the top of the Mesozoic carbonate sequence and the Quaternary faults dissecting it. As a matter of fact, both are very important elements for understanding the origin of the volcanic activity in the area, that often in the past, has been the topic of debates not supported by reliable data. In the study area, referring to the depth of the carbonate basement, comparison between the result achieved by the seismic prospecting and previous gravity studies has been made. It shows coherence in some areas but large discrepancy within others. Near the town of S. Anastasia, the gravity and seismic depth estimates differ as much as 1000 m or more. Furthermore, the seismic data show that the source of the greatest volcanic eruption in the area (the so-called ‘Campanian Ignimbrite') is probably not located in the Acerra depression, as suggested by other authors. A main NE–SW fault directed toward Vesuvius, considered as playing a primary role on volcanogenetic processes and previously recognised only offshore by marine seismic survey, has been now identified also inland using this new seismic information. The results presented here strengthen the hypothesis that Mt. Vesuvius is located at the crossing point of two regional Quaternary sets of fault heading NW–SE and NE–SW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号