首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
Abstract On the island of Mustique, fresh and propylitized olivine–plagioclase–clinopyroxene basalt, plagioclase–clinopyroxene–orthopyroxene and plagioclase–clinopyroxene–amphibole andesite lavas and minor intrusions are interbedded with Oligocene pyroclastic and epiclastic rocks. Chemical data show that two isotopically identical, but chemically different, suites of lava are present: (i) the OPXS (87Sr/86Sr 0.70403–0.70454; 143Nd/144Nd 0.512952–0.512986; δ18Ocpx 5.49 and 5.61), comprising basalts and orthopyroxene‐bearing andesites; and (ii) the AMPHS (87Sr/86Sr 0.70401–0.70457; 143Nd/144Nd 0.512981–0.513037; δ18Ocpx 5.54), made up of basalts and amphibole‐bearing andesites. The OPXS has higher contents of TiO2, P2O5, light rare earth elements, Sm, Pb, Th, U, Zr, Y and Nb, and higher La/Yb ratios than the AMPHS. The isotopic data suggest that both suites formed from melts derived from the same subduction‐modified depleted mantle source as the volcanic rocks of nearby St Vincent and Bequia, and the northern islands of the Lesser Antilles Arc. The immobile trace element contents, and La/Yb ratios, of the OPXS are indicative of ~10% partial melting of the source, whereas those of the AMPHS are indicative of ~25% partial melting. The within‐suite chemical variation of the OPXS is consistent with ~45% fractional crystallization of its intratelluric mineral assemblages, and that of the AMPHS is consistent with the removal of ~65% of its intratelluric assemblages. Experimental evidence suggests that both suites of basalt crystallized at pressures <8 kbar from melts containing 1–2 wt% water. After extensive fractional crystallization, the andesites crystallized at pressures between approximately 5 and 2 kbar. The OPXS magmas appear to have lost more of their water content than the AMPHS magmas. Thus, the OPXS andesites formed from melts with an estimated water content of 2–3 wt%, whereas the AMPHS andesites formed from melts containing at least 4.5 wt% water.  相似文献   

2.
Ghodrat Torabi 《Island Arc》2010,19(2):277-291
The Jandaq lamprophyres occur as eight mostly parallel dykes, which cross‐cut Eocene volcanic and sedimentary rocks of the Pis‐Kuh Formation in dominant north to south direction. These lamprophyres are mainly composed of kaersutite, clinopyroxene, olivine, feldspar, ilmenite, and spinel as primary minerals. The rocks studied here are enriched in alkalis, TiO2, large ion lithophile elements, and light rare‐earth elements (LREE), with SiO2 content between 41.7 and 46.2 wt%, and are classified as camptonite and alkaline lamprophyre according to the mineralogical and chemical characteristics. These rocks exhibit positive Eu anomalies (Eu/Eu* = 1.08–1.39) and are characterized by strong enrichment in LREE relative to heavy REEs, and also by varied Zr/Hf ratios. The geochemical features of the rocks suggest that the lamprophyre magmas were derived from low‐degree melting of an amphibole garnet lherzolite that experienced strong metasomatism by carbonate‐rich fluids in response to dehydration melting from the subducted slab. The Jandaq lamprophyric magmatism has been attributed to the former subduction of the Central–East Iranian microcontinent confining oceanic crust from the Triassic to Eocene, and decompression melting induced by the extensional basin of the Jandaq area in the early Oligocene.  相似文献   

3.
Volcanism in the Taupo Volcanic Zone (TVZ) and the Kermadec arc-Havre Trough (KAHT) is related to westward subduction of the Pacific Plate beneath the Indo-Australian Plate. The tectonic setting of the TVZ is continental whereas in KAHT it is oceanic and in these two settings the relative volumes of basalt differ markedly. In TVZ, basalts form a minor proportion (< 1%) of a dominant rhyolite (97%)-andesite association while in KAHT, basalts and basaltic andesites are the major rock types. Neither the convergence rate between the Pacific and Indo-Australian Plates nor the extension rates in the back-arc region or the dip of the Pacific Plate Wadati-Benioff zone differ appreciably between the oceanic and continental segments. The distance between the volcanic front and the axis of the back-arc basin decreases from the Kermadec arc to TVZ and the distance between trench and volcanic front increases from around 200 km in the Kermadec arc to 280 km in TVZ. These factors may prove significant in determining the extent to which arc and backarc volcanism in subduction settings are coupled.All basalts from the Kermadec arc are porphyritic (up to 60% phenocrysts) with assemblages generally dominated by plagioclase but with olivine, clinopyroxene and orthopyroxene. A single dredge sample from the Havre Trough back arc contains olivine and plagioclase microphenocrysts in glassy pillow rind and is mildly alkaline (< 1% normative nepheline) contrasting with the tholeiitic nature of the other basalts. Basalts from the TVZ contain phenocryst assemblages of olivine + plagioclase ± clinopyroxene; orthopyroxene phenocrysts occur only in the most evolved basalts and basaltic andesites from both TVZ and the Kermadec Arc.Sparsely porphyritic primitive compositions (Mg/(Mg+Fe2) > 70) are high in Al2O3 (>16.5%), and project in the olivine volume of the basalt tetrahedron. They contain olivine (Fo87) phenocrysts and plagioclase (> An60) microphenocrysts. These magmas have ratios of CaO/Al2O3, A12O3/TiO2 and CaO/TiO2 in the range of MORB and MORB picrites and can evolve to the low-pressure MORB cotectic by crystallisation of olivine±plagiociase. Such rocks may be the parents of other magmas whose evolutionary pathways are complicated by interaction of crystal fractionation, crystal accumulation and mixing processes and the filtering action of crust of variable density and thickness. The interplay of these processes likely accounts for the scatter of data about the cotectic. More evolved rocks from both TVZ and KAHT contain clinopyroxene and orthopyroxene phenocrysts and their compositions merge with basaltic andesites and andesites. Stepwise least-squares modelling using phenocryst assemblages in proportions observed in the rocks suggest that crystal fractionation and accumulation processes can account for much of the diversity observed in the major-element compositions of all lavas.We conclude that the parental basaltic magmas for volcanism in the TVZ and KAHT segments are similar thereby implying grossly similar source mineralogy. We attribute the diversity to secondary processes influencing liquids as they ascended through complex plumbing systems in the sub arc mantle and cross.  相似文献   

4.
The Ladakh Mesozoic ophiolite belt (western Himalaya) contains a pile of volcanic thrust sheets (Dras unit) which differ significantly in structure and composition from the ophiolitic mélange zones. The Dras unit is composed of pillow lavas, doleritic sills, very irregular basaltic (?basaltic andesites) and dacitic flows intercalated with pyroclastics, volcanoclastic sediments and radiolarian cherts. According to fossil evidence, this volcanism must have been active between Upper Jurassic and Upper Cretaceous.The presence of relict primary minerals, such as magnesiochromite, clinopyroxene, hastingsitic hornblende and Ti-magnetite as well as distinctive bulk chemistries, suggests that the volcanics belong to island arc tholeiite and to calc-alkaline rock series, typical of present island arcs in the Caribbean and Pacific.Model calculations incorporating probed phenocryst phases indicate that in addition to olivine, clinopyroxene and plagioclase, amphibole and titanomagnetite are crucial fractionating phases in the development of the dacites from a primitive tholeiitic melt. The latter process must have taken place at about 1000°C and at moderate depth of 5–15 km within or underneath the island arc. Today, hornblende-bearing mafic cumulates appear in the vicinity of Kargil within and close to the Dras volcanics.In a Sr-evolution diagram, the Dras volcanics have yielded a “pseudo-isochron” with a low initial ratio of 0.7035 ± 0.0003, which is in the same range as the mean of modern island arc volcanics. However, a geologically unrealistic age of 263 m.y., is obtained from the slope of this isochron.The upper mantle is regarded as the source material for the island arc tholeiitic magmas. Enrichment in K, Ba, Sr and LREE supports the involvement of components derived from dehydration or incipient melting of subducted Tethyan oceanic crust in the mantle.  相似文献   

5.
Volcanoes of the Mariana arc system produce magmas that belong to several liquid lines of descent and that originated from several different primary magmas. Despite differences in parental magmas, phenocryst assemblages are very similar throughout the arc. The different liquid lines of descent are attributed to differences in degree of silica saturation of the primary liquids and in the processes of magmatic evolution (fractional crystallization vs magma mixing). Pseudoternary projections of volcanic rocks from several arc volcanoes are used to show differences between different magmatic suites. In most of the arc, parental liquids were Ol- and Hy-normative basalts that crystallized olivine, augite, and plagioclase (± iron-titanium oxide) and then plagioclase and two pyroxenes, apparently at low pressure. Eruptive rocks follow subparallel liquid lines of descent on element–element diagrams and on pseudoternary projections. Magmas at North Hiyoshi are Ne-normative and have a liquid line of descent along the thermal divide due to precipitation of olivine, augite, and plagioclase. Derived liquids are large ion lithophile element (LILE)-rich. Magmas at other Hiyoshi seamounts included an alkaline component but had more complex evolution. Those at Central Hiyoshi formed by a process dominated by mixing alkaline and subalkaline magmas, whereas those at other Hiyoshi seamounts evolved by combined magma mixing and fractional crystallization. Influence of the alkaline component wanes as one goes south from North Hiyoshi. Alkaline and subalkaline magmas were also mixed to produce magmas erupted at the Kasuga seamounts that are behind the arc front. The alkaline magmas at both Hiyoshi and Kasuga seamounts had different sources from those of the subalkaline magmas at those sites as indicated by trace element ratios and by Nd.  相似文献   

6.
The International Ocean Discovery Program Expedition 350 drilled between two Izu rear‐arc seamount chains at Site U1437 and recovered the first complete succession of rear‐arc rocks. The drilling reached 1806.5 m below seafloor. In situ hyaloclastites, which had erupted before the rear‐arc seamounts came into existence at this site, were recovered in the deepest part of the hole (~15–16 Ma). Here it is found that the composition of the oldest rocks recovered does not have rear‐arc seamount chain geochemical signatures, but instead shows affinities with volcanic front or some of the extensional zone basalts between the present volcanic front and the rear‐arc seamount chains. It is suggested that following the opening of the Shikoku back‐arc Basin, Site U1437 was a volcanic front or a rifting zone just behind the volcanic front, and was followed at ~ 9 Ma by the start of rear‐arc seamount chains volcanism. This geochemical change records variations in the subduction components with time, which might have followed eastward moving of hot fingers in the mantle wedge and deepening of the subducting slab below Site U1437 after the cessation of Shikoku back‐arc Basin opening.  相似文献   

7.
Yoga A.  Sendjaja  Jun-Ichi  Kimura  Edy  Sunardi 《Island Arc》2009,18(1):201-224
The Sunda Arc of Indonesia developed along the convergent margin between the Eurasian and the Australian Plates. More than 100 Quaternary volcanic centers occur along the arc. The West Java Arc is a segment of the Sunda Arc in which more than 10 volcanic centers are located, corresponding to the 120 to 200 km depth contours of the Wadati–Benioff zone. The geochemistry of 207 Quaternary lavas from six centers across the arc was investigated. The lavas range from basalt to dacite. Incompatible element abundances increase from the volcanic front to the rear‐arc in response to a change from low‐K to high‐K suites. Nd–Sr isotope compositions of the basalts scatter between mid‐ocean ridge basalt (MORB) source mantle and Indian Ocean sediment (SED) compositions, with volcanic front low‐K basalts having more radiogenic Nd than the rear‐arc basalts. It is suggested that mixing between slab‐derived fluids mainly from the SED and melt from MORB source mantle played a significant role in determining the geochemistry of the West Java basalts. Incompatible element patterns in primitive mantle normalized multi‐element plots are almost identical across the arc, except for greater inclination and weaker positive Sr spikes in the rear‐arc basalts. This suggests a lower degree of partial melting in the rear‐arc mantle, accompanied by change in SED fluid composition between the volcanic front and the rear‐arc. The latter is confirmed by fluid‐fluxed melting model calculations using multiple trace elements and Nd and Sr isotopes. All the West Java Arc lavas require deficit of Sr from the slab SED. This may occur due to selective breakdown of Sr‐rich hydrous silicate minerals, such as zoisite, at shallower depths before the SED component reaches the depth of dehydration effective for magma genesis. The rear‐arc basalts need further Sr deficits along with lesser fluid. These features are commonly observed in many arc basalts, and are likely attributable to the same mechanism.  相似文献   

8.
The mafic volcanic rocks and hypabyssal rocks in the Chon Dean‐Wang Pong area are possibly the southern extension of the western Loei Volcanic Sub‐belt, Northeast Thailand. They are least‐altered, and might have been formed in Permian–Triassic times. The rocks are commonly porphyritic, with different amounts of plagioclase, clinopyroxene, orthopyroxene, amphibole, Fe–Ti oxide, unknown mafic mineral, and apatite phenocrysts or microphenocrysts, and are uncommonly seriate textured. The groundmass mainly shows an intergranular texture, with occasionally hyalophitic, intersertal and ophitic–subophitic textures. The groundmass constituents have the same minerals as the phenocrysts or microphenocrysts and may contain altered glass. The groundmass plagioclase laths may show a preferred orientation. Chemically, the studied rock samples can be separated into three magmatic groups: Group I, Group II, and Group III. These magmatic groups are different in values for Ti/Zr ratios. The averaged Ti/Zr values for Group I, Group II, and Group III rocks are 83 ± 6, 46 ± 12, and 29 ± 5, respectively. In addition, the Group I rocks have higher P/Zr, but lower Zr/Nb relative to Group II and Group III rocks. The Group I and Group II rocks comprise tholeiitic andesite–basalt and microdiorite–microgabbro, while the Group III rocks are calc‐alkalic andesite and microdiorite. According to the magmatic affinities and the negative Nb anomalies on normal mid‐oceanic ridge basalt (N‐MORB) normalized multi‐element plot, arc‐related lavas are persuasive. The similarity between the studied lavas and the Quaternary lavas from the northern Kyukyu Arc, in terms of chondrite‐normalized rare earth element (REE) patterns and N‐MORB normalized multi‐element patterns, leads to a conclusion that the mafic volcanic rocks and hypabyssal rocks in the Chon Daen–Wang Pong area have been formed in a volcanic arc environment.  相似文献   

9.
Geochemical and mineralogical characteristics of the Eocene volcanic succession in Tafresh area of the Urumieh–Dokhtar Magmatic Assemblage (UDMA) are unique in the 2000‐km‐length assemblage. Demonstrating rather steep rare earth element (REE) patterns and the widespread presence of amphibole (+biotite) phenocrysts are two distinct characters that dominate the Eocene volcanic succession of mainly andesitic composition. Coincidence of the geochemical and mineralogical characteristics of the whole volcanic succession with adakites, rather amphibole‐ (+biotite) rich dacitic (with 61–64 wt% SiO2) stocks and dykes, is considered as the key in unraveling the role of ‘slab‐derived melt contribution’ in petrogenesis of the volcanic succession. Slab‐derived melting has been an ongoing process that metasomatized some parts of the mantle wedge from which hybrid rocks (andesites) are derived. Basalts with distinct signatures of slab melt metasomatism are yet another support for the occurrence of slab melting. Interlayering of normal, island‐arc‐type calc‐alkaline volcanic rocks with the slab‐melt metasomatized basalts and hybrid andesites suggests that the slab melting has been motivated by the subduction. Formation of the Tafresh Caldera, the likely consequence of an explosive eruption, is compatible with the volatile‐bearing nature of the adakitic volcanism in the study area. It is indicated by the ubiquitous presence of the hydrous minerals. Beneath the Tafresh area, in Eocene time, the subducting slab seems to have reached a critical high depth that is enough for the development of amphibolite–eclogite. The slab deformation, motivated by the geometry of subduction and/or the underlying mantle's steeper geotherms, is suggested to have resulted in the slab melting that helped develop a rock assemblage unique to the UDMA.  相似文献   

10.
Understanding the petrologic and geochemical evolution of island arcs is important for interpreting the timing and impacts of subduction and processes leading to the formation of a continental crust. The Izu–Bonin–Mariana (IBM) Arc, western Pacific, is an outstanding location to study arc evolution. The IBM first arc (45–25 Ma) followed a period of forearc basalt and boninite formation associated with subduction initiation (52–45 Ma). In this study, we present new major and trace element data for the IBM first arc from detrital glass shards and clasts from DSDP Site 296, located on the northernmost Kyushu Palau Ridge (KPR). We synthesize these data with published literature for contemporaneous airfall ash and tephra from the Izu–Bonin forearc, dredge and piston core samples from the KPR, and plutonic rocks from the rifted eastern KPR escarpment, locations which lie within or correlate with KPR Segment 1 of Ishizuka, Taylor, Yuasa, and Ohara (2011). Our objective is to test ways in which petrologic and chemical data for diverse igneous materials can be used to construct a complete picture of this section of the Oligocene first arc and to draw conclusions about its evolution. Important findings reveal that widely varying primary magmas formed and differentiated at various depths at this location during this period. Changes in key trace element ratios such as La/Sm, Nb/Yb, and Ba/Th show that mantle sources varied in fertility and in the inputs of subducted sediment and fluids over time and space. Plutonic rocks appear to be related to early K‐poor dacitic liquids represented by glasses sampled both in the forearc and volcanic fronts. An interesting observation is that the variation in magma compositions in this relatively small segment encompasses that inferred for the IBM Arc as a whole, suggesting that sampling is a key factor in inferring temporal, across‐arc, and along‐strike geochemical trends.  相似文献   

11.
Phenocrystic chrome spinel crystallized in normal MORB‐type greenstones in the East Takayama area. Associated phenocryst minerals show a crystallization sequence that was olivine first, followed by plagioclase, and finally clinopyroxene. Chrome spinel ranges from 0.54 to 0.77 in Mg/(Mg+Fe2+) and 0.21 to 0.53 in Cr/(Cr+Al); the Fe3+ content varies from 0.07 to 0.22 p.f.u. (O = 4). Significant compositional differences of spinel were observed among the phenocryst mineral assemblages. Chrome spinel in the olivine–spinel assemblage shows a wide range in Cr/(Cr+Al), and is depleted in Fe2+ and Fe3+. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage is Fe2+‐ and Fe3+‐rich at relatively high Cr/(Cr+Al) ratios. Basalt with the olivine–plagioclase–spinel assemblage contains both aluminous spinel and Fe2+‐ and Fe3+‐rich spinel. The assumed olivine–spinel equilibrium suggests that chrome spinel in the olivine–spinel assemblage changed in composition from Cr‐ and Fe2+‐rich to Al‐ and Mg‐rich with the progress of fractional crystallization. Chrome spinel in the olivine–plagioclase–clinopyroxene–spinel assemblage, on the other hand, exhibits the reversed variations in Mg/(Mg+Fe2+) and in Cr/(Cr+Al) ratios that decrease and increase with the fractional crystallization, respectively. The entire crystallization course of chrome spinel, projected onto the Mg/(Mg+Fe2+)–Cr/(Cr+Al) diagram, exhibits a U‐turn, and appears to be set on a double‐lane route. The U‐turn point lies in the compositional field of chrome spinel in the olivine–plagioclase–spinel assemblage, and may be explained by plagioclase fractionation that began during the formation of the olivine–plagioclase–spinel assemblage.  相似文献   

12.
The Niyasar plutonic complex, one of the Cenozoic magmatic assemblages in the Urumieh‐Dokhtar magmatic belt, was the subject of detailed petrographic and mineralogical investigations. The Niyasar magmatic complex is composed of Eocene to Oligocene mafic rocks and Miocene granitoids. Eleven samples, representing the major rock units in the Niyasar magmatic complex and contact aureole were chosen for mineral chemical studies and for estimation of the pressure, temperature, and oxygen fugacity conditions of mineral crystallization during emplacement of various magmatic bodies. The analyzed samples are composed of varying proportions of quartz, plagioclase, K‐feldspar, hornblende, biotite, titanite, magnetite, apatite, zircon, garnet, and clinopyroxene. Application of the Al‐in‐hornblende barometer indicates pressures of around 0.2 to 0.4 kbar for the Eocene–Oligocene mafic bodies and around 0.5 to 1.7 kbar for the Miocene granitoids. Hornblende‐plagioclase thermometry yields relatively low temperatures (661–780 °C), which probably reflect late stage re‐equilibration of these minerals. The assemblage titanite–magnetite–quartz as well as hornblende composition were used to constrain the oxygen fugacity and H2O content during the crystallization of the parent magmas in the Miocene plutons. The results show that the Miocene granitoids crystallized from magmas with relatively high oxygen fugacity and high H2O content (~5 wt% H2O). The Miocene granitoids show similar range of oxygen fugacity, H2O contents and mineral chemical compositions, which indicate a common source for their magmas. Although the crystallization pressures of the Miocene plutons discriminate various categories of plutonic bodies emplaced at depths of about 5.7–6.5 km (Marfioun pluton), about 4.2 km (Ghalhar pluton) and 1.9–2.3 km (Poudalg pluton), they were later uplifted to the same level by vertical displacement of faults. The emplacement depths of the Niyasar plutons suggest that the central part of the Urumieh‐Dokhtar magmatic belt has experienced an uplift rate of ca. 0.25–0.4 mm/yr from the Miocene onwards.  相似文献   

13.
Latest Oligocene and Early Miocene volcanic rocks occur on the Northland Peninsula, New Zealand, and record the inception of Cenozoic subduction-related volcanism in the North Island that eventually evolved to its present manifestation in the Taupo Volcanic Zone. This NW-striking Northland Arc is continuous with the Reinga Ridge and comprises two parallel belts of volcanic centres ca. 60 km apart. A plethora of tectonic models have been proposed for its origins. We acquired new trace element and Sr–Nd isotope data to better constrain such models. All Northland Arc rocks carry an arc-type trace element signature, however distinct differences exist between rocks of the eastern and western belt. Eastern belt rocks are typically andesites and dacites and have relatively evolved isotope ratios indicating assimilated crustal material, and commonly contain hornblende. Additionally some eastern belt rocks with highly evolved isotope compositions show fractionated REE compositions consistent with residual garnet, and some contain garnetiferous inclusions in addition to schistose crustal fragments. In contrast, western belt rocks are mostly basalts or basaltic andesites with relatively primitive Sr–Nd isotope compositions, do not contain hornblende and show no rare earth element evidence for cryptic amphibole fractionation. Eastern and western belt rocks contain comparable slab-derived fractions of fluid-mobile trace elements and invariably possess an arc signature. Therefore the difference between the belts may be best explained as due to variation in crustal thickness across the Northland Peninsula, where western belt centres erupted onto a thinner crustal section than eastern belt rocks.The consistent arc signature throughout the Northland arc favours an origin in response to an actual, if short-lived subduction event, rather than slab detachment as proposed in some models. No Northland Arc rocks possess a convincing adakite-like composition that might reflect the subduction of very young oceanic lithosphere such as that of the Oligocene South Fiji Basin. Therefore we favour a model in which subduction of old (Cretaceous) lithosphere drove subduction.  相似文献   

14.
The Oligocene alkaline basalts of Toveireh area (southwest of Jandaq, Central Iran) exhibit northwest–southeast to west–east exposure in northwest of the central‐east Iranian microcontinent (CEIM). These basalts are composed of olivine (Fo70–90), clinopyroxene (diopside, augite), plagioclase (labradorite), spinel, and titanomagnetite as primary minerals and serpentine and zeolite as secondary ones. They are enriched in alkalis, TiO2 and light rare earth elements (La/Yb = 9.64–12.68) and are characterized by enrichment in large ion lithophile elements (Cs, Rb, Ba) and high field strength elements (Nb, Ta). The geochemical features of the rocks suggest that the Toveireh alkaline basalts are derived from a moderate degree partial melting (10–20%) of a previously enriched garnet lherzolite of asthenospheric mantle. Subduction of the CEIM confining oceanic crust from the Triassic to Eocene is the reason of mantle enrichment. The studied basalts contain mafic‐ultramafic and aluminous granulitic xenoliths. The rock‐forming minerals of the mafic‐ultramafic xenoliths are Cr‐free/poor spinel, olivine, Al‐rich pyroxene, and feldspar. The aluminous granulitic xenoliths consist of an assemblage of hercynitic spinel + plagioclase (andesine–labradorite) ± corundum ± sillimanite. They show interstitial texture, which is consistent with granulite facies. They are enriched in high field strength elements (Ti, Nb and Ta), light rare earth elements (La/Yb = 37–193) and exhibit a positive Eu anomaly. These granulitic xenoliths may be Al‐saturated but Si‐undersaturated feldspar bearing restitic materials of the lower crust. The Oligocene Toveireh basaltic magma passed and entrained these xenoliths from the lower crust to the surface.  相似文献   

15.
The Andaman–Sumatra margin displays a unique set‐up of extensional subduction–accretion complexes, which are the Java Trench, a tectonic (outer arc) prism, a sliver plate, a forearc, oceanic rises, inner‐arc volcanoes, and an extensional back‐arc with active spreading. Existing knowledge is reviewed in this paper, and some new data on the surface and subsurface signatures for operative geotectonics of this margin is analyzed. Subduction‐related deformation along the trench has been operating either continuously or intermittently since the Cretaceous. The oblique subduction has initiated strike–slip motion in the northern Sumatra–Andaman sector, and has formed a sliver plate between the subduction zone and a complex, right‐lateral fault system. The sliver fault, initiated in the Eocene, extended through the outer‐arc ridge offshore from Sumatra, and continued through the Andaman Sea connecting the Sagaing Fault in the north. Dominance of regional plate dynamics over simple subduction‐related accretionary processes led to the development and evolution of sedimentary basins of widely varied tectonic character along this margin. A number of north–south‐trending dismembered ophiolite slices of Cretaceous age, occurring at different structural levels with Eocene trench‐slope sediments, were uplifted and emplaced by a series of east‐dipping thrusts to shape the outer‐arc prism. North–south and east–west strike–slip faults controlled the subsidence, resulting in the development of a forearc basins and record Oligocene to Miocene–Pliocene sedimentation within mixed siliciclastic–carbonate systems. The opening of the Andaman Sea back‐arc occurred in two phases: an early (~11 Ma) stretching and rifting, followed by spreading since 4–5 Ma. The history of inner‐arc volcanic activity in the Andaman region extends to the early Miocene, and since the Miocene arc volcanism has been associated with an evolution from felsic to basaltic composition.  相似文献   

16.
The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian–Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1–14.2 wt.% MgO, 459–657 ppm Cr, and 455–564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene, and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins/sills which probably represent magmas crystallized near the crust–mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, and Fe–Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by “normal” (crystal and xenoliths poor) alkaline basalts.  相似文献   

17.
Barren Island (BI) is a subduction-related volcanic island lying in the northeastern Indian Ocean, about 750 km north of the northern tip of Sumatra. Rising from a depth of ∼2300 m on the Andaman Sea floor, BI has a submarine volume estimated at ∼400 km3, but the island is just 3 km across, reaches a maximum elevation of 355 m, and has a subaerial volume of only ∼1.3 km3. The first historical eruption began in 1787 when a cinder cone grew in the center of a pre-historical caldera 2-km in diameter and sent lava flows westward to reach the sea; activity continued intermittently until 1832. Two subsequent eruptions modified the central cone and also sent lava flows westward to reach the sea in 1991 and 1994–1995.A suite of 28 lava, scoria, and ash samples were investigated from various stages of the subaerial eruptive history of BI. Most are basalts (including all 10 samples from the 1994–1995 eruption) and basaltic andesites (including 7 of 8 samples from the 1991 eruption), but 2 pre-1787 andesites were also studied. On multi-element spider diagrams the BI suite shows subparallel trends for most elements that reflect an important role for fractional crystallization, along with the characteristic depletions of Nb–Ta and enrichments of K–Rb–Pb found in other subduction-related island-arc suites. The typical relative enrichment of Ba is not present, likely because the subducted sediments in the Andaman arc are not Ba-rich. Wide compositional ranges for Cs, Th, Rb, U, and Pb may trace different degrees of scavenging from the underlying volcanic pile.BI basalts and basaltic andesites have variable abundances of phenocrystic–microphenocrystic olivine plus Cr–Al–Mg spinel inclusions, plagioclase, and clinopyroxene, embedded in a matrix of glass, the same minerals, and titanomagnetite (mostly exsolved). The most remarkable mineralogical feature of certain BI basalts and basaltic andesites is the presence of abundant (to 40 vol.%) and large (to 5 mm) crystals of relatively homogeneous anorthitic plagioclase (to An95.7). These have inclusions of Mg olivine (to Fo79) and thin (10–150 μm) normally zoned margins that reach to the more sodic compositions of the plagioclase phenocryst and microphenocryst rims. Anorthitic plagioclase crystals are common at many subduction-related volcanoes. At BI, the anorthitic plagioclase and associated olivine crystals are thought to have entered the magmas through disaggregation of troctolitic crystal mushes or plutonic xenoliths. This process affected bulk-rock compositions in many ways, including raising Al2O3 contents to values as high as 22.8 wt.% and Eu / Eu* values up to 1.05. Compared to a large petrological and geochemical database for Indonesian volcanic rocks, the BI suite falls at the most depleted end for levels of K and incompatible trace elements, and Sr, Nd, and Pb isotopic ratios. Consequently, the BI suite defines an excellent primitive baseline against which Indonesian volcanic suites can be compared.  相似文献   

18.
The Iliniza Volcanic Complex (IVC) is a poorly known volcanic complex located 60 km SSW of Quito in the Western Cordillera of Ecuador. It comprises twin peaks, North Iliniza and South Iliniza, and two satellite domes, Pilongo and Tishigcuchi. The study of the IVC was undertaken in order to better constrain the role of adakitic magmas in the Ecuadorian arc evolution. The presence of volcanic rocks with an adakitic imprint or even pristine adakites in the Ecuadorian volcanic arc is known since the late 1990s. Adakitic magmas are produced by the partial melting of a basaltic source leaving a garnet rich residue. This process can be related to the melting of an overthickened crust or a subducting oceanic crust. For the last case a special geodynamic context is required, like the subduction of a young lithosphere or when the subduction angle is not very steep; both cases are possible in Ecuador. The products of the IVC, made up of medium-K basaltic andesites, andesites and dacites, have been divided in different geochemical series whose origin requires various interactions between the different magma sources involved in this subduction zone. North Iliniza is a classic calc-alkaline series that we interpret as resulting from the partial melting of the mantle wedge. For South Iliniza, a simple evolution with fractional crystallization of amphibole, plagioclase, clinopyroxene, magnetite, apatite and zircon from a parental magma, being itself the product of the mixing of 36% adakitic and 64% calc-alkaline magma, has been quantified. For the Santa Rosa rhyolites, a slab melting origin with little mantle interactions during the ascent of magmas has been established. The Pilongo series magma is the product of a moderate to high degree (26%) of partial melting of the subducting oceanic crust, which reached the surface without interaction with the mantle wedge. The Tishigcuchi series shows two stages of evolution: (1) metasomatism of the mantle wedge peridotite by slab melts, and (2) partial melting (10%) of this metasomatized source. Therefore, the relative ages of the edifices show a geochemical evolution from calc-alkaline to adakitic magmas, as is observed for several volcanoes of the Ecuadorian arc.  相似文献   

19.
The major and trace element geochemistry of lavas erupted from four volcanic front (VF) stratovolcanoes in southeastern Guatemala show differences in the relative importance of flux and decompression melting in a continental arc setting. The VF stratovolcanoes exhibit a wide compositional range from basalt to dacite, although modern Pacaya erupts basaltic lavas. The VF basalts have relatively low MgO contents and plot outside the field of primary arc magmas defined by melting experiments on hydrous peridotite. After subtracting the effects of the fractionation, assimilation, and alteration of some VF lavas, separate partial melting and mixing trends were identified for Agua–Pacaya and Tecuamburro–Moyuta.The distinct chemical signatures of the hemipelagic and carbonate sediments subducted off Guatemala provide constraints on material transfer processes that occurred between the slab and mantle wedge. Model fluids and melts from the subducted slab were calculated using recently published mineral–aqueous fluid partition coefficients. Wide separation of the model fluid and melt compositions on a U/La versus Ba/Th diagram creates diagnostic mixing curves with an enriched mid-ocean ridge basalt source. Fluid from mature ocean crust has high U/La, fluid from carbonate sediment has high Ba/Th, and fluid and melt from hemipelagic sediments have both high U/La and Ba/Th. In a simple single-stage model, a mantle metasomatized by fluid originating largely from the oceanic crust with only minor sediment fluid contributions best explains the overall large ion lithophile element composition of the VF lavas. (Th/Rb)N ratios of ∼1 in the VF lavas from southeastern Guatemala require a component of sediment melting. Therefore, a more realistic two-stage model to describe the Guatemalan arc data involves an initial hemipelagic sediment melt input to the wedge followed by minor fluid additions from the oceanic crust or sediments. Correlation between measures of slab input and extent of melting in the older VF lavas from Tecuamburro and Moyuta favors flux-dominated melting near the base of the mantle wedge. In sharp contrast, the lack of a relationship between slab additions and melting in younger lavas from Agua and Pacaya volcanoes implies a significant role for decompression melting closer to the top of the wedge. In this melting scenario, the rate of crustal extension determines the extent of melting.  相似文献   

20.
Niobium–tantalum systematics of slab-derived melts are powerful tracers that discriminate residual high-pressure rutile-bearing eclogite from low-pressure garnet-bearing amphibolite in subducting plates. Previously reported low Nb–Ta ratios in modern slab melts suggested a predominance of shallow melting in the presence of residual amphibole and that deep melting of rutile-bearing eclogitic slabs, devoid of residual amphibole, is volumetrically insignificant. This study evaluates Nb/Ta in combination with other trace element systematics of modern intra-oceanic and slab melt-related arc lavas from the south-western volcanic chain of the Solomon Islands that cover over 1000 km of the SW Pacific plate border. After a change of subduction polarity, an old subducted Pacific slab and a recently subducting Indian–Australian slab are both present beneath the arc. Solomon arc lavas show sub- to superchondritic Nb–Ta ratios (ca. 10 to 27) which is the largest range ever reported in modern island arc lavas. The large range of Nb/Ta likely results from enrichment of the depleted sub-arc mantle by two distinct slab-derived melts in addition to fluids. One minor slab melt component is derived from the shallow and recent subducting Indian–Australian plate where amphibole is still a significant residual phase. The second slab melt component is predominant in Solomon arc lavas and can be attributed to deep rutile–eclogite-controlled melting of old subducted Jurassic Pacific oceanic crust where residual amphibole is entirely absent or insignificant. The deep Pacific slab melt component is the most likely origin of the extremely high and superchondritic Nb/Ta signatures that produce the upper half of the observed range of Nb/Ta in Solomon arc lavas. The slab melt component that enriched the sub-arc mantle with an unusually high Nb/Ta signature is derived from an initially intact Pacific plate that was probably subject to a slab break-off event and subsequent melting at depths exceeding 100 km. The geochemical evidence presented here shows that old and cold subducted oceanic crust, which is initially not torn, may resist shallow melting but can melt at greater depths instead. The resulting slab melts are generated in the presence of residual rutile-bearing eclogite and significantly fractionate Nb–Ta ratios which may be of relevance at a global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号