首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This biomonitoring study presents the spatial and temporal distributions of heavy metals in the soft tissues of a major fouling species Amphibalanus amphitrite living on hard substrate at different sites along the eastern Aegean coast. A. amphitrite has been chosen as a strong candidate for monitoring heavy metals. Sediment and seawater samples were also collected to detect their metal contents in order to gain more information on the environmental conditions and possible bioaccumulation patterns. The physico-chemical characteristics of sampling stations have been measured in order to characterize the sampling area. The order of metal concentrations in barnacles, sediment and seawater decreased in the following order Cu > Fe > Zn > Mn > Cd > Cr > Pb > Hg, Fe > Mn > Zn > Cu > Pb > Cr > Hg > Cd and Fe > Zn > Mn > Cu > Pb > Cr > Cd > Hg, respectively. These results showed that barnacles accumulate Cu in a higher degree than both sediment and seawater. Moreover, metal concentrations in barnacle have the potential for use in any future regulatory framework monitoring and eventually controlling ambient metal pollution levels.  相似文献   

2.
Sediment from twelve stations was sampled from the Tupilipalem Coast, southeast coast of India, and the presence of a set of heavy metals was established including iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn) and cadmium (Cd). The heavy metals were assessed by factor analysis, the results of which showed positive and/or negative correlations among Fe, Mn, Cr, Cu, Ni, Pb, Zn, and Cd. Factor analysis also indicated that heavy metals in the sediments of the study area have different natural and anthropogenic sources. Similarly, a sediment pollution assessment was done using the Geoaccumulation Index (Igeo), Enrichment Factor (EF), and Pollution Load Index (PLI). The Geoaccumulation Index indicated that the surface sediment of the Tupilipalem Coast was extremely contaminated with Fe, Mn, Cr, Cu, Ni, Pb, and Zn. The calculation of enrichment factors showed a significant enrichment with respect to Pb, Zn, and Cd and a moderate enrichment with Cr, Cu, and Ni. The falling trend of average contents’ enrichment factors is Cd> Pb> Zn> Cu> Cr> Ni> Mn> Fe. The PLI values of the Cd show higher (>1) values due to the influence of distinct external sources like agricultural runoff, industrial activities, and other anthropogenic inputs. Ninety two percent of heavy metals under study showed the highest concentrations at station TP-5 where the Buckingham Canal and other agricultural and aquacultural effluents connect with the Bay of Bengal. This location is the second inlet which is periodically closed and it seemed that these parts of the study area are heavily affected by anthropogenic pollution.  相似文献   

3.
The objective of the current study was to assess the contamination of potentially toxic metals (PTMs) in weathered surface sediment, along stream tributaries, and surrounding area of the river Chitral, Shyok suture zone district Chitral, Pakistan. To understand the geochemical features of 113 sediment, samples were collected from the Mirkhani and Drosh area. Then, different statistical tools including the geo-accumulation index (Igeo), cluster analysis (CA), principal component analysis (PCA), and ecological risk assessment (ERA) were used to unravel the origin, intensity, and exposure level of PTMs to control risk and restore the ecosystem within the study area. The results for the PTMs namely nickle (Ni), chromium (Cr), copper (Cu), cadmium (Cd), lead (Pb), zinc (Zn), and cobalt (Co) in Mirkhani and Drosh were in the following ranges: 10–150, 15–210, 15–250, 0.08–1.00, 10–70, 76–240 and 14–51; and 13–240, 17–210, 15–150, 0.08–0.60, 7–140, 47–150 and 13–36 mg/kg, respectively. In consequence, the potential ecological risk caused by Pb, Ni, Cu, Co, Cr, and Zn is reflected by the percentages of samples with an ecological risk index (ERI) greater than one which were 100%, 91%, 100%, 100%, 92%, and 100%, respectively. However, the overall mean decreasing order of ecological risk of PTMs in the district Chitral was Pb > Ni > Cu > Co > Cr > Zn > Cd. Moreover, the PCA yielded 78% variability which indicated that mineral prospects play an important role in the contamination of sediment. Furthermore, the mineral phases of Pb and Zn suggested supersaturation, while that for Cd revealed unsaturation. The results of Igeo, ERI, and CA indicated contamination of PTMs in the study area. The ERI value of Pb, Ni, Cu, Co, Cr, and Zn was higher than 1 suggesting an ecological risk in the study area. Moreover, the current study showed the dominance of geogenic contamination with major contributions from ultramafic rock and known mineral prospects. Therefore, contaminated sediment of the Shyok suture zone is extremely detrimental to the aquatic ecosystem of the study area.  相似文献   

4.
The acute static bioassays with heavy metals at 13 ± 1.5 °C in hard water (total hardness = 240 ppm as CaCO3) were conducted in the laboratory with Daphnia magna. The 48 hr LC values and their 95 per dent confidence limits in ppm of metal were: 0.0038 (0.0027… 0.0053) for Hg; 0.015 (0.009… 0.026) for Ag; 0.1 (0.063… 0.16) for Cu; 0.69 (0.48… 1.0) for Zn; 1.52 (1.01… 2.28) for Co; 1.8 (1.16… 2.70) for Cr; 1.5 (1.07… 2.1) for Cd; 2,63 (1.7… 4.08) for Pb; 7.3 (5.49… 9.71) for Ni and 19.5 (13.45… 28.3) for Sn. At the close of 24 h of exposure Zn and Cd solutions showed milky white precipitation. The order of toxicity of heavy metals in this model was: Hg>Ag>Cu>Zn>Cd>Co>Cr>Pb>Ni>Sn. Comparison of D. magna and mouse LC50 data showed that Daphnia were sensitive at 1/2710, 1/83, 1/123 and 1/5.5, the LC50 values of Hg, Cu and Zn, respectively. Toxicity test with D. magna is simple, requiring less space, time, facilities, acclimatization time and equipment. Furthermore, Daphnia is more functional, reliable and gives reproducible results. Based on this data we believe the Daphnia magna model can be used as a model to study heavy metal toxicity.  相似文献   

5.
The objective of this study was to evaluate the concentration and distribution of heavy metals in the sediments of Paulo Gorski Lake, as well as the metals’ bioavailability and potential ecological risk, and to define the anthropogenic and natural heavy metal contributions to the lake. The chemical elements calcium (Ca), cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), potassium (K), magnesium (Mg), manganese (Mn), sodium (Na), nickel (Ni), lead (Pb), and zinc (Zn) were quantified by flame atomic absorption spectrophotometry with two extraction methods to quantify the bioavailable and non-bioavailable fractions. The data were evaluated using multivariate statistics and sediment quality indices. All sediment collection points (S1, S2, S3, S4 and S5) are different in terms of the concentration of heavy metals, except for S4 and S5, which were statistically equal. The bioavailable fraction of the elements in the sediment follows the sequence Pb>Cu>Mn>Zn>Ni>Cr>phosphorus (P) for all points. The elements Co, Cr, Pb, and Zn showed moderate to considerable contamination at all points. Only points S3 and S5 had moderate ecological risk. Urbanization has been affecting Paulo Gorski Lake via the input of chemical elements, especially Co and Pb. The points most affected by heavy metal contamination are S3 and S5 when the sedimentological sensitivity factor is considered. The lake has high hydrodynamics, causing some of the contaminants that enter the system to leave it, leading to potential negative impacts downstream.  相似文献   

6.
Freshwater lakes are one of the most vulnerable ecosystems to environmental contamination. This study was initiated to assess the spatial distribution, fractionation, ecological risk of selected potentially toxic metals (Pb, Zn, Cu, Cr, and Ni) in bottom sediments of the Zarivar lake, the second largest freshwater lake in Iran. The results revealed that Pb, Zn and Cu had the high spatial variability (coefficient of variation >50) across the sampling sites and their maximum concentrations (197.5 for Pb, 198.7 for Zn and 185.6 mg/kg for Cu) were observed in sampling sites from the northern, western and eastern margins of the lake. Cr and Ni with average concentrations of 28.3 and 31.38 mg/kg respectively, exhibited low spatial variability (coefficient of variation <20) and their concentrations did not vary significantly among the sampling sites. Based on the redundancy analysis (RDA), sediment organic matter was strongly correlated with Pb, Zn and Cu while Fe2O3 and Al2O3 showed a positive correlation with Ni and Cr. The calculated average enrichment factor (EF) and geoaccumulation index (Igeo) showed that the contamination level of metals can be arranged in the following order of Pb> Cu > Zn > Cr > Ni. Results from the modified five-step sequential extraction analysis indicated that 40 % of total Pb and Zn were associated with the reducible fraction, 45 % of Cu with the oxidizable fraction and more than 80 % of total Ni and Cr were retrieved from the residual fraction. It was also noticed that Pb, Zn and Cu were more incorporated into the non-residual fractions in the sites with a higher total concentration of these metals, suggesting that both total concentration and fractionation behavior of metals were influenced by their potential sources in the study area. Ecological risk assessment using the potential ecological risk index (PERI) and the modified potential ecological risk index (MPERI) showed that sediments from the eight sampling sites pose a moderate to considerable risk whereas the other sites had low ecological risk level. In comparison to sediment quality guidelines (SQGs), the effects range low (ERL) and probable effect level (PEL) values for Pb, Cu and Zn were exceeded at some sampling sites while Ni and Cr concentrations were found to be below or close to their SQGs values at all the sampling sites. Pb was generally identified as the contaminant of most concern in the study area. Taking into account the results obtained from the fractionation study and the source contribution estimate, it can be inferred that the Pb, Zn and Cu with the average contribution of 79, 54 and 64 % respectively, were mainly derived from anthropogenic sources whereas Ni and Cr with the estimated contribution of 80 and 89 % were predominately from the lithogenic source.  相似文献   

7.
Forty-three sediment samples were collected from the beaches of Miri City, Sarawak, Malaysia to identify the enrichment of partially leached trace metals (PLTMs) from six different tourist beaches. The samples were analyzed for PLTMs Fe, Mn, Cr, Co, Cu, Ni, Pb, Sr and Zn. The concentration pattern suggest that the southern side of the study area is enriched with Fe (1821–6097 μg g−1), Mn (11.57–90.22 μg g−1), Cr (51.50–311 μg g−1), Ni (18–51 μg g−1), Pb (8.81–84.05 μg g−1), Sr (25.95–140.49 μg g−1) and Zn (12.46–35.04 μg g−1). Compared to the eco-toxicological values, Cr > Effects range low (ERL), Lowest effect level (LEL), Severe effect level (SEL); Cu > Unpolluted sediments, ERL, LEL; Pb > Unpolluted sediments and Ni > ERL and LEL. Comparative results with other regions indicate that Co, Cr, Cu, Ni and Zn are higher, indicating an external input rather than natural process.  相似文献   

8.
River water and sediment embody environmental characteristics that give valuable eco-environmental information.Due to rapid industrialization,the aquatic environment of any urban river can be seriously polluted by heavy metals(HMs).The global concern is caused by heavy metal pollution because of its potential harm to aquatic ecosystems and human health.In the Bhairab River,Bangladesh,surface sediment concentrations of globally alarming toxic metals such as arsenic(As),chromium(Cr),cadmium(Cd),an...  相似文献   

9.
Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto López Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g−1), followed by Selenium (10.92 μg g−1). The mean concentration of toxic metal Cadmium was 6.12 μg g−1 and 1.01 μg g−1 respectively. Mean concentrations of metals followed this pattern: Zn > Se > Ni > Cu > Mn > Cd > Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta.  相似文献   

10.
Samples of the polychaete Chaetopterus variopedatus, worm tubes, commensal crab Polyonyx gibbesi and sediments were collected in eight sites in Todos os Santos Bay, Brazil, in order to evaluate the potential use of the polychaetes and crabs as biomonitors and to assess the relationships and accumulation of trace and major elements in different benthic compartments. Trace and major elements were determined by ICP OES. Organic carbon, total nitrogen and sulfur were determined by CNS elemental analyser. Tubes, crabs and polychaetes were important in the retention of trace and major elements. Metals that presented the highest accumulation in polychaetes (i.e. Mg > Al > Fe > Zn > Mn > Co > Cu > Ba > Cr) where the same for crabs (i.e. Mg > Al > Fe > Mn > Co > Zn > Cu > Ba > Cr). High concentrations of Al, Ba, Cr, Mn and Fe, from terrigenous sources, were observed in tubes, which presented accumulation factors up to 81.5 for Mn. Sedentary polychaetes are seen as good biomonitor alternatives for metal contamination studies, because they are one of the most abundant taxon in the benthic system, live in direct contact with sediments, are present in broad distributions and can also handle relatively high concentrations of metals ensuring chronic exposition. The possibility to work with not only the polychaete but also its tube offers advantages compared to bivalves that generally do not accumulate certain metals in very high levels.  相似文献   

11.
Topsoil (0–20 cm) samples were collected from the edge of roads to the locations about 200 m off the roads along the four roads with different transportation periods in October 2005. Total concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn were determined using the inductively coupled plasma atomic absorption spectrometry in order to assess and compare road transportation pollution. Results showed that with the exception of As, Cu and Pb, the average concentrations of heavy metals were generally, higher than the regional elemental background values. Most soil samples were moderately or highly polluted by Cd or Ni, but the contamination index (P i ) values for As, Pb and Zn were lower than other heavy metals in all sites. Among the four roads, heavy metal pollution was heavier for Dali Road due to longer transportation periods, while low or no contamination could be observed for the other roads. However, the integrated contamination index (P c ) values showed a generally low contamination or no contamination level for all soil samples in this region, followed by the order of Dali Road > Dabao Highway > Road 320 > Sixiao Highway. The same pollution source of these heavy metals was found using factor analysis.  相似文献   

12.
This study characterized the magnetic property and levels of heavy metals of the topsoils near a cement plant. The concentrations of five selected heavy metals (Pb, Cu, Zn and Cd) were measured on 32 topsoil samples (0–20 cm) collected near a cement plant via inductively coupled plasma/mass spectroscopy (ICP-MS). The orders of enrichment factors (EF), on average, were Cd (7.3) > Cu (3) > Zn (2.9) > Pb (2.1), respectively. A self-organizing map (SOM) was applied to the concentrations of heavy metals for “correlation hunting”. Mineral magnetic concentration parameters, such as the specific magnetic susceptibility (χ), susceptibility of anhysteretic remanent magnetization (χARM), saturation isothermal remanent magnetization (SIRM), together with interparametric ratios (such as IRM 100mT/SIRM, SIRM/χ, χARM/SIRM) show that ferrimagnetic, superparamagnetic (SP) and multi-domain (MD) minerals dominated the soils. The results of correlation analysis indicate that copper showed a significant correlation with χ, χARM and SIRM but such a relationship with χ, χARM and SIRM was only weakly identified for Zn, Cd and Pb.  相似文献   

13.
We monitored the concentrations of copper, lead and cadmium in seawater, in suspended particulate matter (SPM) and in bacteria, phyto- and zooplankton communities separated from abiogenic particles, over a one year cycle in two coupled Mediterranean coastal ecosystems (Little Bay (LiB) and Large Bay (LaB)). Metals were present in seawater in the order Cu > Pb > Cd in both bays and showed important variations within the same month than among months. In LiB, their concentrations were between 0.62 and 2.82 μg Cu l−1, 0.16 and 19 μg Pb l−1 and 0.007 and 0.14 μg Cd l−1, respectively, whereas in LaB, they were between 0.23 and 2.11 μg Cu l−1, 0.09 and 0.76 μg Pb l−1 and not detected and 0.65 μg Cd l−1. SPM play an important role on metal adsorption, especially for copper. Bioaccumulation factors showed that bacteria and phytoplankton accumulate metals whereas zooplankton tends to biodiminish them in the plankton food web.  相似文献   

14.
This study was conducted to determine the vertical and horizontal distribution of selected metals and magnetic susceptibility (χlf) in an industrial site located in Isfahan province, central Iran. For this purpose, we used a grid sampling methodology and excavated 202 profiles. Soil samples were then collected from 0–30, 60–90, and 120–150 cm depths. The mass magnetic susceptibility (χ) of the soil samples was measured at both low and high frequencies (χlf and χhf) using the Bartington MS2 dual frequency sensor; and χfd was also calculated. Soil samples were also analyzed for iron (Fe), manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), nickel (Ni), chromium (Cr) and cobalt (Co) concentrations. The results showed that there were positive significant correlations among selected metals including Zn, Pb, Fe and Mn, which were mainly added through coal fly ash from an iron smelting factory at the studied site, while the concentration of Ni, Cr and Co was mainly controlled by the parent material of the soils. The trends in results at the site of study were similar in vertical and horizontal distribution for the industrial originated metals as judged by pollution load index (PLI) using χlf. The results of SEM/EDX also confirmed the presence of spheroid of magnetic particles in the surface soil samples taken in close proximity of the factory. Based on the results using the contamination factors (CF) determined for selected metals, the following order was observed: Pb > Zn > Mn > Fe > Cu > Ni  Co > Cr. The results also suggested that magnetic methods could be used to estimate the metal contamination from anthropogenic sources in industrial soils.  相似文献   

15.
Ecotoxicity of three potentially toxic metals (PTM) (Cu, Zn, and Cr) in a slightly acidic sandy soil is tested using the soil respiration test (OECD‐217) in order to determine EC50 values for the carbon transformation activity of microorganisms. Addition of an organic amendment of Populus leaves is also crossed with metal spiking in order to investigate possible interaction with metal toxicity. Soil respiration is measured at day 1 and 28 after the soil spiking with the PTM to assess short‐term effects on soil microbial activity. Of the three metals tested, Cu shows the highest toxicity at the longest exposure times (day 28) and Zn shows a strong inhibitory effect in the short‐term (day 1), even though later toxicity diminish significantly. Cr is the least toxic studied PTM. Organic amendment outweighs any adverse effects of these metals, increasing soil respiration, even in the treatments with high doses of metals.  相似文献   

16.
《Marine pollution bulletin》2014,85(1-2):373-378
The surficial coastal sediments in Kendari Bay are sampled in the field to determine the concentration and pollution level of three heavy metals (Pb, Cd and Cr). Twenty-five sampling points ranging from the inner (Wanggu River) to the outer area of the bay have been chosen. The physicochemical properties, such as temperature, pH, salinity and TDS of the overlying water, as well as the sediment type and TOC of the surficial sediments, are also measured. The total concentrations of the Pb, Cd and Cr in the sediment samples are quantified using inductively-coupled plasma mass spectrometry (ICP-MS). The concentrations of the heavy metals (Pb, Cd and Cr) ranged from 0.84 to 17.02 μg/g, 0.02 to 0.17 μg/g and 1.92 to 40.11 μg/g (dry weight), respectively, following the Cr > Pb > Cd sequence. To assess the degree of contamination, a geoaccumulation index (Igeo) is measured. Kendari Bay is not a contaminated area regarding Pb, Cd and Cr.  相似文献   

17.
Sediment samples were collected from ten selected sites of the lower Meghna River estuary,and six heavy metals were analyzed with Atomic Absorption Spectrophotometry(AAS)to assess the contamination level and the metals’association with sediment grain size.The current results revealed that the mean concentrations of the studied metals were ranked in descending order of iron(Fe)(1.29×103 mg/kg)>zinc(Zn)(42.41 mg/kg)>lead(Pb)(12.48 mg/kg)>chromium(Cr)(10.59 mg/kg)>copper(Cu)(6.22 mg/kg)>cadmium(Cd)(0.28 mg/kg).The geo-accumulation,contamination,and pollution load indexes suggested that the lower Meghna river estuary was not contaminated by Fe,Zn,Pb,Cr,and Cu.The mean size of the sediment ranged from 28.92 to 126.2 mm,and the Pearson correlation coefficient showed a significant association between Fe and Pb(coefficient of determination,r2=0.836;p<0.05),and no significant correlation was found between individual metals and grain size,indicating no or low influence on the metals distribution.  相似文献   

18.
In order to investigate the pollution levels, sources and ecological risks of arsenic (As) and heavy metals (Cr, Ni, Cu, Zn, Pb and Cd) in inshore sediments of the Yellow River estuary, the surface sediment in areas of inshore coastal waters were sampled in October 2014 as the flow-sediment regulation project (FSRP) was implemented for 13 years. Results showed that the concentrations of As and heavy metals in inshore sediments of the Yellow River estuary were in the order of Zn?>?Cr?>?Cu?>?Ni?>?Pb?>?As?>?Cd. Higher levels of As, Cr, Ni, Cu, Zn and Pb generally occurred in fine-grained sediments of the Yellow River estuary and the southeast region, which was consistent with the spatial distribution of clay. In contrast, higher concentrations of Cd were generally observed in northwest area of the Yellow River estuary and near the Qingshuigou estuary, which showed similarly spatial distribution with that of sand. The sediment quality guidelines (SQGS) and geoaccumulation indices (Igeo) indicated that the inshore sediments were polluted by Cu, Cd, As, Pb and Zn, and, among them, Cd pollution was more serious. Ecological risk indices (E r i ) demonstrated low risks for Cr, Ni, Cu, Zn, Pb and As, and high potential toxicity by Cd. The integrated ecological risk index implied that 6.8% of stations presented moderate risk, 4.5% of stations exhibited disastrous risk, and 88.7% of stations demonstrated considerable risk. Principal component analysis indicated that Ni, Cu, Zn, Pb and As might originate from common pollution sources, while Cr and Cd might share another similar sources. With the continuous implementation of FSRP, As and heavy metal levels in inshore sediments of the Yellow River estuary could be classified as stage I (2002–2010) and stage II (2010–2014). In the stage I, As, Cr, Ni, Cu, Zn and Pb levels fluctuated but decreased significantly, whereas Cd concentrations showed little variation. In the stage II, As and heavy metal levels significantly increased although some little fluctuations occurred. The continuous accumulation of As and heavy metals (especially for Cd) in inshore sediments of the Yellow River estuary would occur again as the FSRP was implemented for 9 years (since 2010). The ecotoxicological risk of Cd, As, Ni and Cu in inshore sediments might be more serious since the accumulation of the four elements would be continuously occurred in future years. Next step, there will be long-term potential consequences for marine organism if effective measures are not taken to control the loadings of metal pollutants into estuary.  相似文献   

19.
为评估滆湖围网拆除工程实施效果,采用高密度网格化布点方法,系统分析滆湖沉积物营养盐和重金属的空间分布和污染特征;并基于有机氮评价方法、综合污染指数评价方法、重金属地质累积指数法和重金属潜在生态风险评价方法进行污染风险评价.结果表明,滆湖沉积物总氮(TN)、总磷(TP)和总有机碳(TOC)的平均含量分别为(3709±1004)mg/kg、(1127±650) mg/kg和(78.39±23.88) mg/g,三者空间分布特征较为一致;营养盐综合污染指数评价表明,全湖整体为重度污染,其中全湖TN均处于重度污染状态,TP绝大部分区域也处于重度污染状态.沉积物重金属Zn、Cr、As、Pb、Ni、Cu、Cd 的平均含量分别为(170.62±47.25)、(105.18±34.91)、(68.55±10.86)、(52.43±14.73)、(44.04±11.93)、(42.57±12.43)、(1.55±1.06) mg/kg,整体上呈现出由南向北、自西向东逐渐增加的趋势,重金属含量最高值在湖区东北角;地积累指数法和潜在生态风险指数法评价结果均表明Cd和As是主要的生态风险贡献因子,其中Cr和Ni的污染程度表现为清洁,Cr、Ni、Cu、Zn和Pb的单项潜在生态风险等级表现为轻微风险.与围网拆除前比,湖中区西南部沉积物营养盐含量无显著变化,湖南区南部沉积物营养盐状况明显改善,但其余各区域沉积物营养盐状况均有不同程度的恶化;湖区沉积物中重金属元素平均含量均有极大程度的降低,降幅在29.50%~80.45%之间,表明在外源污染输入得到一定控制时,围网拆除在控氮、控磷效果及改善重金属污染状况方面有着积极作用.  相似文献   

20.
The values for the partition coefficient (Kd) were calculated for Ca, Mg, Cd, Cr, Cu, Fe, Mn, Pb, Ni, and Zn at 19 sites in the Capivara hydroelectric reservoir in Brazil. It was found that the relative values of Kd follow the order: Cr > Mn > Fe > Cu > Zn > Ni > Pb > Ca > Cd, differing from the values reported for Kd in aquatic systems in the northern hemisphere. A hierarchical cluster analysis and linear correlations showed that Cr is strongly associated with Fe and Cu, and that Cd is the only metal found in complexation with organic matter, explaining its higher solubility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号