首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The basaltic to trachydacitic (50–65 wt.% SiO2) upper Diliman Tuff is the youngest deposit of a sequence of tuffaceous deposits in Metro Manila. The deposit is located north of Taal Caldera and northwest of Laguna Caldera, which are both within the Southwest Luzon Volcanic Field. Chemical variations in the pumice fragments within the upper Diliman Tuff include medium-K basalt to basaltic andesite, high-K basaltic andesite to andesite and trachyandesite to trachydacite. Magma mixing/mingling is ubiquitous and is shown by banding textures in some pumice fragments, considerable range in groundmass glass composition (54 to 65 wt.% SiO2) in a single pumice fragment, and zoning in plagioclase phenocrysts. Simple binary mixing modeling and polytopic vector analysis were used to further evaluate magma mixing. Trace-element variations are inconsistent with the medium-K and high-K magmas being related by crystal fractionation. The medium-K basalts represent hotter intrusions, which induced small degrees of partial melting in older crystallized medium-K basaltic material within the crust to produce the high-K magmas. All melts likely differentiated in the crust but the emplaced and new basaltic intrusions originated from the mantle wedge and were generated by subduction zone processes. The volcanic source vent for the upper Diliman Tuff has not been identified. In comparisons with the deposits from adjacent Taal and Laguna Calderas it is chemically distinct with respect to both major- and trace-element concentrations.  相似文献   

2.
The last eruptions of the monogenetic Bakony-Balaton Highland Volcanic Field (western Pannonian Basin, Hungary) produced unusually crystal- and xenolith-rich alkaline basalts which are unique among the alkaline basalts of the Carpathian–Pannonian Region. Similar alkaline basalts are only rarely known in other volcanic fields of the world. These special basaltic magmas fed the eruptions of two closely located volcanic centres: the Bondoró-hegy and the Füzes-tó scoria cone. Their uncommon enrichment in diverse crystals produced unique rock textures and modified original magma compositions (13.1–14.2 wt.% MgO, 459–657 ppm Cr, and 455–564 ppm Ni contents). Detailed mineral-scale textural and chemical analyses revealed that the Bondoró-hegy and Füzes-tó alkaline basaltic magmas have a complex ascent history, and that most of their minerals (~30 vol.% of the rocks) represent foreign crystals derived from different levels of the underlying lithosphere. The most abundant xenocrysts, olivine, orthopyroxene, clinopyroxene, and spinel, were incorporated from different regions and rock types of the subcontinental lithospheric mantle. Megacrysts of clinopyroxene and spinel could have originated from pegmatitic veins/sills which probably represent magmas crystallized near the crust–mantle boundary. Green clinopyroxene xenocrysts could have been derived from lower crustal mafic granulites. Minerals that crystallized in situ from the alkaline basaltic melts (olivine with Cr-spinel inclusions, clinopyroxene, plagioclase, and Fe–Ti oxides) are only represented by microphenocrysts and overgrowths on the foreign crystals. The vast amount of peridotitic (most common) and mafic granulitic materials indicates a highly effective interaction between the ascending magmas and wall rocks at lithospheric mantle and lower crustal levels. However, fragments from the middle and upper crust are absent from the studied basalts, suggesting a change in the style (and possibly rate) of magma ascent in the crust. These xenocryst- and xenolith-rich basalts yield divers tools for estimating magma ascent rate that is important for hazard forecasting in monogenetic volcanic fields. According to the estimated ascent rates, the Bondoró-hegy and Füzes-tó alkaline basaltic magmas could have reached the surface within hours to few days, similarly to the estimates for other eruptive centres in the Pannonian Basin which were fed by “normal” (crystal and xenoliths poor) alkaline basalts.  相似文献   

3.
Island arc and continental margin (i.e. western Americas) lavas are divided (based on raw data from literature) into basalts (defined by absence of Ca-poor pyroxene, dominated by quartz-normative tholeiites); basaltic andesites and andesites (subdivided on basis of breaks in SiO2 histogram and taken as <56% and 56–63% SiO2; Ca-poor pyroxene present; amphibole and biotite absent); and hornblende (±biotite) lavas, which prove to be mainly relatively silicic andesites. Relative proportions of these types are (576 samples): 23% basalts, 29% basaltic andesites; 30% andesites; 18% hornblende andesites. The compilation emphasizes the dominance of calcic plagioclase (labradorite-anorthite) amongst the phenocryst phases. Pyroxenes are largely augite and hypersthene (En60–75); olivine (Fo65–85) is common through all compositions. There is an overall close similarity in chemistry and mineralogy between continental margin and island arc lavas, although small consistent differences are apparent (e.g. K2O, TiO2, P2O5).Modal data indicate that 70% of lavas are phenocryst-rich (20–60 vol.%), and that phenocryst contents show a bimodal distribution. Statistically and petrologically significant correlations are found between mineralogy and rock chemistry, most notably between total rock Al2O3 and modal phenocrystic plagioclase (found in all data groups, except hornblende andesites). This, and related data and correlations, indicate that the majority of orogenic magmas are modified by crystal fractionation (including crystal accumulation) processes dominated by plagioclase, and interpreted to occur under relatively low pressures. Dominance of plagioclase suggests phenocryst precipitation occurs typically in water-undersaturated magmas.  相似文献   

4.
Four closely spaced volcanoes (Summer Coon; Twin Mountains; Del Norte; Carnero Creek) form the east-central cluster of Conejos volcanic centers. These Conejos rocks range from high-K basaltic andesite to rhyolite, with andesite volumetrically the most abundant. Summer Coon and Twin Mountains are composite volcanoes. The Del Norte and Carnero Creek volcanoes are deeply eroded dacite shields. Rhyolite (10% of our Conejos analyses but a much smaller percentage by volume) is only known from Summer Coon and Twin Mountains volcanoes, although high-SiO2 dacite occurs in the Del Norte volcano. The younger Hinsdale Formation contains a related series ranging from transitional basalt to high-K andesite; we use Hinsdale Formation analyses to represent Conejos parental magmas.Conejos and Hinsdale magmas evolved through AFC processes: Basalt, after interacting with lower crust, assimilated low K/Rb crust, similar in some ways to Taylor and McLennan (Taylor, S.R., and McLennan, S.M., 1985, The continental crust: its composition and evolution. Oxford, Blackwell Scientific.) model upper crust; main series basaltic andesite fractionated to high-K andesite; rhyolite was produced by melting of high K/Ba upper crustal rocks similar to granite gneiss known from inclusions and basement outcrops. Some rhyolite may have been back-mixed into fractionating andesite and dacite. Field evidence for assimilation includes sanidinite-facies, partially melted, gneiss blocks up to 1 m in diameter. Temperature estimates (1100–900 ° C) from two-pyroxene equilibria are consistent with this interpretation, as are the sparsely porphyritic nature of the most-evolved rhyolites and the absence of phenocrystic alkali feldspar.Our study supports the conclusions of previous workers on AFC processes in similar, but generally more mafic, Conejos magmas of the southeastern San Juan Mountains. Our results, however, emphasize the importance of crustal melting in the generation of Conejos rhyolite. We further speculate that Conejos magmatism, and the San Juan Volcanic Field (SJVF) in general, may represent an early phase of Rio Grande rift magmatism, the orogenic geochemical signature of the series having been generated through multi-level and extensive assimilation of varied Precambrian orogenic and anorogenic rocks.  相似文献   

5.
Hiroyuki  Ishimoto  Kenji  Shuto  Yoshihiko  Goto 《Island Arc》2006,15(2):251-268
Abstract   Middle Miocene to Quaternary primitive basalts and high magnesian andesite (HMA) in North Hokkaido resulted from three periods of intense volcanism; early-stage (12–10 Ma), middle-stage (9–7 Ma) and late-stage (3–0 Ma). Based on the chemical compositions of olivines and chromian spinels and bulk chemistry of the primitive rocks, we examined depths of segregation of the calculated primary magmas and the degrees of partial melting of the source mantle. In the context of asthenospheric mantle upwelling, petrological data from the present study can be accounted for by the secular change in the depth of magma segregation from the upwelled asthenospheric mantle, which is composed of fertile peridotite. Thus, the early-stage primary magmas were generated by higher degrees of partial melting of the shallower part of hot asthenospheric mantle, whereas the middle- and late-stage primary magmas resulted from lower degrees of partial melting of a deeper part of the asthenospheric mantle. The early-stage HMA magma was generated by partial melting of the remnant subcontinental lithospheric mantle composed of refractory peridotite. This melting might have resulted from an increased geothermal gradient caused by upwelling of hot asthenosphere.  相似文献   

6.
Origin of calc-alkalic andesite in the Japanese Islands is reviewed on the basis of the recent trace element data and new experimental results. It is suggested that calc-alkalic andesites in the Japanese Islands have at least four different origins; (1) fractional crystallization with separation of magnetite of high-alumina basalt magma, (2) partial melting of hydrous upper mantle peridotite (for magnesian andesite), (3) fractional crystallization with separation of olivine and/or orthopyroxene of magnesian andesite magma and (4) mixing of dacitic and basaltic magmas. Emphasis is placed on the possible generation of primary magnesian calc-alkalic andesite magmas by direct partial melting of the upper mantle peridotite under hydrous conditions at depths between 40 and 60 km.  相似文献   

7.
Shirouma-Oike volcano, a Quaternary composite volcano in central Japan, consists mostly of calc-alkaline andesitic lavas and pyroclastic rocks. Products of the earlier stage of the volcano (older group) are augite-hypersthene andesite. Hornblende crystallized during the later stage of this older group, whereas biotite and quartz crystallized in the younger group.Assemblages of phenocrysts in disequilibrium, such as magnesian olivine(Fo30)/quartz, iron-rich hypersthene(En55)/iron-poor augite(Wo43.5, En42.5, Fs14.0), and two different types of zoning on the rim of clinopyroxene are found in a number of rocks. Detailed microprobe analyses of coexisting minerals reveal that phenocrysts belong to two distinctly different groups; one group includes magnesian olivine + augite which crystallized from a relatively high-temperature (above 1000°C) basaltic magma; the second group, which crystallized from relatively low temperature (about 800°C) dacitic to andesitic magma, includes hypersthene + hornblende + biotite + quartz + plagioclase + titanomagnetite ± ilmenite (in the younger group) and hypersthene + augite + plagioclase + titanomagnetite ± hornblende (in the older group). The temperature difference between the two magmas is clarified by Mg/Fe partition between clinopyroxene and olivine, and Fe-Ti oxides geothermometer. The compositional zoning of minerals, such as normal zoning of olivine and magnesian clinopyroxene, and reverse zoning of orthopyroxene, indicate that the basaltic and dacitic-andesitic magmas were probably mixed in a magma reservoir immediately before eruption. It is suggested that the basaltic magma was supplied intermittently from a deeper part to the shallower magma reservoir, in in which dacitic-andesitic magma had been fractionating.  相似文献   

8.
Field, chronologic, chemical, and isotopic data for late Cenozoic basaltic rocks from the northwestern United States illustrate the relationship between crustal structure and tectonic forces in controlling the genesis and evolution of continental volcanism. In the northwestern U.S., the first major episode of basaltic volcanism was triggered by crustal rifting in a “back-arc” environment, east of the westward-migrating volcanic arc created by the subduction of the Juan-de-Fuca plate beneath the North American plate. Rifting and volcanism were concentrated by pre-existing zones of crustal weakness associated with boundaries between the old Archean core of the continent and newly accreted terranes. Basalts erupted during this time (Columbia River, Steens Mountain) show evidence of significant fractionation histories including contamination by crust of varying age depending on the crustal structure at the eruption site. Presumably this reflects ponding and stagnation of primary magmas in the crust or at the crust-mantle interface due to their encounter with thick crust, not yet extended and still containing its low-density, easily fusible component. Continued rifting of this crust, and modification of its composition through extraction of rhyolitic partial melts and deposition of the fractionation products from primary basaltic melts, coupled with a shift in stress orientation roughly 10.5 Ma ago, allowed relatively unfractionated and uncontaminated magmas to begin reaching the surface. In the western part of the region (Oregon Plateau), these magmas tapped a mantle source similar to that which produced most of the ocean island basalts of the northern hemisphere. To the east (Snake River Plain), however, the mantle sampled by basaltic volcanism has isotopic characteristics suggesting it has preserved a record of incompatible element enrichment processes associated with the formation of the overlying Archean crustal section some 2.6 Ga ago.  相似文献   

9.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   

10.
Miocene to Quaternary large basaltic plateaus occur in the back-arc domain of the Andean chain in Patagonia. They are thought to result from the ascent of subslab asthenospheric magmas through slab windows generated from subducted segments of the South Chile Ridge (SCR). We have investigated three volcanic centres from the Lago General Carrera–Buenos Aires area (46–47°S) located above the inferred position of the slab window corresponding to a segment subducted 6 Ma ago. (1) The Quaternary Río Murta transitional basalts display major, trace elements, and Sr and Nd isotopic features similar to those of oceanic basalts from the SCR and from the Chile Triple Junction near Taitao Peninsula (e.g., (87Sr/86Sr)o = 0.70396–0.70346 and εNd = + 5.5  + 3.0). We consider them as derived from the melting of a Chile Ridge asthenospheric mantle source containing a weak subduction component. (2) The Plio-Quaternary (< 3.3 Ma) post-plateau basanites from Meseta del Lago Buenos Aires (MLBA), Argentina, likely derive from small degrees of melting of OIB-type mantle sources involving the subslab asthenosphere and the enriched subcontinental lithospheric mantle. (3) The main plateau basaltic volcanism in this region is represented by the 12.4–3.3-Ma-old MLBA basalts and the 8.2–4.4-Ma-old basalts from Meseta Chile Chico (MCC), Chile. Two groups can be distinguished among these main plateau basalts. The first group includes alkali basalts and trachybasalts displaying typical OIB signatures and thought to derive from predominantly asthenospheric mantle sources similar to those of the post-plateau MLBA basalts, but through slightly larger degrees of melting. The second one, although still dominantly alkalic, displays incompatible element signatures intermediate between those of OIB and arc magmas (e.g., La/Nb > 1 and TiO2 < 2 wt.%). These intermediate basalts differ from their strictly alkalic equivalents by having lower High Field Strength Element (HFSE) and higher εNd (up to + 5.4). These features are consistent with their derivation from an enriched mantle source contaminated by ca. 10% rutile-bearing restite of altered oceanic crust. The petrogenesis of the studied Mio-Pliocene basalts from MLBA and MCC is consistent with contributions of the subslab asthenosphere, the South American subcontinental lithospheric mantle and the subducted Pacific oceanic crust to their sources. However, their chronology of emplacement is not consistent with an ascent through an asthenospheric window opened as a consequence of the subduction of segment SCR-1, which entered the trench at 6 Ma. Indeed, magmatic activity was already important between 12 and 8 Ma in MLBA and MCC as well as in southernmost plateaus, i.e., 6 Ma before the subduction of the SCR-1 segment. We propose a geodynamic model in which OIB and intermediate magmas derived from deep subslab asthenospheric mantle did uprise through a tear-in-the-slab, which formed when the southernmost segments of the SCR collided with the Chile Trench around 15 Ma. During their ascent, they interacted with the Patagonian supraslab mantle and, locally, with slivers of subducted Pacific oceanic crust that contributed to the geochemical signature of the intermediate basalts.  相似文献   

11.
Rosemary  Hickey-Vargas 《Island Arc》2005,14(4):653-665
Abstract Basalts and tonalites dredged from the Amami Plateau in the northern West Philippine Basin have the geochemical characteristics of intraoceanic island arc rocks: low 87Sr/86Sr (0.70297–0.70310), intermediate 143Nd/144Nd (0.51288–0.51292), moderate light rare earth element (LREE) enrichment (La/Yb = 4.1–6.6) and high La/Nb (1.4–4.3). The incremental heating of hornblende from tonalites yielded well‐defined plateaus and 40Ar/39Ar isochron ages of 115.8 ± 0.5 Ma and 117.0 ± 1.1 Ma, while plagioclase yielded disturbed Ar release patterns, with ages ranging from 70 to 112 Ma. Taken together, these results show that the Amami Plateau was formed by subduction‐related magmatism in the Early Cretaceous period, earlier than indicated by prior K/Ar results. The results support tectonic models in which the West Philippine Basin was opened within a complex of Jurassic–Paleocene island arc terranes, which are now scattered in the northern West Philippine Basin, the Philippine Islands and Halmahera. The Amami Plateau tonalites and basalts have higher Sr/Y and lower Y and 87Sr/86Sr compared with younger tonalitic rocks from the northern Kyushu–Palau Ridge and the Tanzawa complex, which were formed by the subduction of the Pacific Plate beneath the Philippine Sea Plate. Based on the geochemical characteristics of the basalts, the Early Cretaceous subduction zone that formed the Amami Plateau may have been the site of slab melting, which suggests that a younger and hotter plate was being subducted at that time. However, the Amami tonalites were probably formed from basaltic magma by fractional crystallization or by partial melting of basaltic arc crust, rather than by melting of the subducted slab.  相似文献   

12.
Alkali basalt, trachybasalt and basanite magmas, containing abundant xenoliths of upper mantle origin, were erupted during the Plio-Pleistocene (2.4-0.14 Ma) in northern Sardinia. The magmas are enriched in K, Rb, Th and Ba relative to mid-ocean ridge basalts (MORB) and most ocean island basalts (OIB), resulting in high K/Nb, Th/Nb, Ba/Nb and Rb/Nb ratios. The large number of spinel peridotite inclusions in these lavas suggests that these chemical features cannot be explained by combined assimilation and fractional crystallization within the continental crust. However, volcanic rock chemistry can be explained by the assimilation of sialic rocks by turbulently convecting, mafic magmas during their ascent to the surface. Fractionation of Ba and K from the light rare earth elements (LREE) is required to explain the positive correlation of K/La and Ba/La with 87Sr/86Sr(i). Consequently, bulk assimilation of crystalline basement rocks by rising, hot basaltic magmas cannot explain the observed chemical trends, and preferential melting of a low melting quartzo-feldspathic crustal component probably occurred, leaving the REE in residual phases such as apatite, zircon, sphene and amphibole. Alternatively, large ion lithophile element (LILE) enrichment may have been related to interaction of rising mafic lavas with metasomatized lithospheric mantle or enriched asthenosphere.  相似文献   

13.
Twenty-three volcanic rocks from the Setouchi volcanic belt, southwest Japan, were analyzed for Nd and Sr isotopic compositions for the purpose of examining the genetic relationships among the basalt, high-magnesium andesite (HMA) and evolved porphyritic andesite. The andesites have higher87Sr/86Sr (0.70487–0.70537) and lower143Nd/144Nd (0.512509–0.512731) than the basalts, i.e., 0.70408–0.70468 and 0.512691–0.512830, respectively. This result confirms earlier conclusions obtained from petrologic study that the andesites cannot be fractionation products of basaltic magma but that the andesitic and basaltic magmas were generated independently. On the basis of melting experiments for HMA and basalt, it is inferred that there is an isotopically stratified mantle beneath southwest Japan. Evolved porphyritic andesites have essentially identical Sr and Nd isotopic ratios to HMA and can be derived by fractionation of primary andesitic magma. A model to produce orogenic andesite is proposed on petrologic, experimental and isotopic bases.  相似文献   

14.
Gabbroic and hornblendite xenoliths from La Palma, Tenerife and Lanzarote fall into three main groups based on petrography and chemistry. One group (comprising all xenoliths from Lanzarote and some from La Palma) consists of highly deformed orthopyroxene-bearing gabbroic rocks that show a strong affinity to N-MORB and oceanic gabbro cumulates in terms of mineral chemistry and REE relations. However, they show mild enrichment in the most incompatible elements (particularly Rb+Ba±K) relative to intermediate and heavy REE, and their Sr–Nd isotope ratios fall within or close to the N-MORB field. The second group (60% of the xenoliths from La Palma) are gabbroic cumulates with zoned clinopyroxenes (Ti–Al-poor cores, Ti–Al-rich rims) and reaction rims of hornblende, biotite and clinopyroxene on other phases. Their trace-element and Sr–Nd isotope relations are in general transitional between N-MORB cumulates and Canary Islands alkali basalts, but they show strong enrichment in Rb, Ba and K relative to other strongly incompatible elements. The third group (comprising some xenoliths from La Palma and all those from Tenerife) are undeformed gabbroic and hornblendite rocks in which hornblende and biotite appear to belong to the primary assemblage. These rocks show strong affinities to Canary Islands alkali basaltic magmas with respect to mineral, trace-element, and Sr–Nd isotope chemistry. The first two groups are interpreted as fragments of old oceanic crust which have been mildly to strongly metasomatized through reactions with Canary Islands alkaline magmas. The reaction process is a combination of enrichment in elements compatible with biotite (and hornblende), and simple mixing between N-MORB cumulates and trapped alkaline magmas. The third group represents intrusions/cumulates formed from mafic alkaline Canary Islands magmas. Modeling indicates that locally up to 50% new material has been added to the old oceanic crust through reactions with ocean island basalts. Reactions and formation of cumulates do not represent simple underplating at the mantle/crust boundary, but have taken place within the pre-existing oceanic crust, and are likely to have significantly thickened the old oceanic crust.  相似文献   

15.
Abstract Volcanism in the back-arc side region of Central Luzon, Philippines, with respect to the Manila Trench is characterized by fewer and smaller volume volcanic centers compared to the adjacent forearc side-main volcanic arc igneous rocks. The back-arc side volcanic rocks which include basalts, basaltic andesites, andesites and dacites also contain more hydrous minerals (ie, hornblende and biotite). Adakite-like geochemical characteristics of these back-arc lavas, including elevated Sr, depleted heavy rare earth elements and high Sr/Y ratios, are unlikely to have formed by slab melting, be related to incipient subduction, slab window magmatism or plagioclase accumulation. Field and geochemical evidence show that these adakitic lavas were most probably formed by the partial melting of a garnet-bearing amphibolitic lower crust. Adakitic lavas are not necessarily arc–trench gap region slab melts.  相似文献   

16.
The southernmost Mariana forearc stretched to accommodate opening of the Mariana Trough backarc basin in late Neogene time, erupting basalts at 3.7–2.7 Ma that are now exposed in the Southeast Mariana Forearc Rift (SEMFR). Today, SEMFR is a broad zone of extension that formed on hydrated, forearc lithosphere and overlies the shallow subducting slab (slab depth ≤ 30–50 km). It comprises NW–SE trending subparallel deeps, 3–16 km wide, that can be traced ≥ ∼30 km from the trench almost to the backarc spreading center, the Malaguana‐Gadao Ridge (MGR). While forearcs are usually underlain by serpentinized harzburgites too cold to melt, SEMFR crust is mostly composed of Pliocene, low‐K basaltic to basaltic andesite lavas that are compositionally similar to arc lavas and backarc basin (BAB) lavas, and thus defines a forearc region that recently witnessed abundant igneous activity in the form of seafloor spreading. SEMFR igneous rocks have low Na8, Ti8, and Fe8, consistent with extensive melting, at ∼23 ± 6.6 km depth and 1239 ± 40°C, by adiabatic decompression of depleted asthenospheric mantle metasomatized by slab‐derived fluids. Stretching of pre‐existing forearc lithosphere allowed BAB‐like mantle to flow along the SEMFR and melt, forming new oceanic crust. Melts interacted with pre‐existing forearc lithosphere during ascent. The SEMFR is no longer magmatically active and post‐magmatic tectonic activity dominates the rift.  相似文献   

17.
Compositional features of 93 samples of primitive Pliocene to recent basalts erupted along the Brothers Fault Zone in the northernmost Basin and Range indicate that they were derived from a shallow mantle source and underwent only minor shallow-level fractionation. Simple mass-balance modelling can derive these basaltic bulk compositions by removal of small amounts of observed crystalline phases from glass compositions produced in peridotite melting experiments. Additional support comes from phase equilibria data on other magnesian basalts having similar bulk compositions. The eruption of these lavas without substantial subcrustal fractionation was probably promoted by progressive extension along the Brothers Fault Zone. This origin is in sharp contrast to that generally proposed for mid-Miocene Columbia River and Steens Mountain basalts, which show clear evidence in their evolved compositions (e.g. Mg # ~ 40) of having stagnated at shallow depth where they differentiated to nearly basaltic andesite compositions. Bulk compositions of northern Basin and Range silicic rocks, together with physical and thermal considerations, suggest that they, like their counterparts in the Snake River Plain, were products of crustal anatexis driven by the injection of mafic magmas, but with meta-volcaniclastic protoliths rather than Archaean basement rocks, as in the case of the Snake River Plain rhyolites. These petrologic features suggest that the arrival of the mantle plume presently beneath Yellowstone produced or strongly influenced most late Cenozoic magmatism in the Oregon northern Basin and Range. This model accounts for many features of the northern Basin and Range in Oregon: (1) the change in basaltic character about 10 to 8 Ma ago from voluminous, evolved Columbia River/Steens lavas to smaller-volume primitive lavas and the lack of younger lavas atop the Columbia River Basalts; (2) the lack of an obvious track of the Yellowstone hot spot west of the Oregon-Idaho-Nevada tri-state area; (3) the “mirror-image” age relationship of silicic rocks in the northern Basin and Range and Snake River Plain; (4) the formation of silicic rocks by crustal anatexis and the general decrease in their volumes with time in Oregon but not along the Snake River Plain; (5) the high elevation of the region; and (6) the high surface heat flow in the Oregon northern Basin and Range. The proposed model obviates the controversy surrounding the pre-Miocene history of the Yellowstone plume by proposing that the plume initiated about 18 Ma ago.  相似文献   

18.
Origin of andesite and its bearing on the Island arc structure   总被引:1,自引:0,他引:1  
The hypothesis that andesite magmas originate from basalt magmas through fractionation is supported for the following reasons: 1) A close association of andesite and dacite with basalt in many volcanoes and a complete gradation in chemistry and mineralogy throughout this suite. 2) Formation of andesite magmas from basalt magmas by differentiation in situ of some intrusive and extrusive bodies. 3) Agreement between the calculated compositions of solid materials to be subtracted from basalt magmas to yield andesite magmas and the observed mineralogy of phenocrysts in these rocks. 4) Higher alkali contents in andesite and dacite associated with high-alumina basalt than in those associated with tholeiite. 5) A complete gradation from the high iron concentration trend of basalt magma fractionation (Skaergaard) to the low or noniron concentration trend (the calc-alkali series) which can be ascribed to the difference of the stage of magnetite crystallization. 6) Similarity between the orogenic rock suite and plateau basalts in the preferential eruption of magmas of middle fractionation stage, givin rise to the great volume of andesite in the orogenic belts and iron-rich basalt in the plateau lavas. Petrological and seismic refraction studies suggest that a great volume of gabbroic materials are present in the lower crust underneath the volcanic belts as a complementary material for the andesite lavas. The island arc structure would develop by repeated eruption of andesite on the surface and by thickening of the oceanic crust underneath the arc due to the addition of gabbroic materials. The suitable portion of the lower crust may be subjected to partial melting to produce granitic magma in the later stage of development of the arc, successively changing it to a part of the adjacent continent.  相似文献   

19.
The Mascota volcanic field is located in the Jalisco Block of western Mexico, where the Rivera Plate subducts beneath the North American Plate. It spans an area of ∼ 2000 km2 and contains ∼ 87 small cones and lava flows of minette, absarokite, basic hornblende lamprophyre, basaltic andesite, and andesite. There are no contemporary dacite or rhyolite lavas. New 40Ar/39Ar ages are presented for 35 samples, which are combined with nine dates from the literature to document the eruptive history of this volcanic field. The oldest lavas (2.4 to 0.5 Ma) are found in the southern part of the field area, whereas the youngest lavas (predominantly < 0.5 Ma) are found in the northern portion. On the basis of these ages, field mapping, and the use of ortho aerial photographs and digital elevation models, it is estimated that a combined volume of 6.8 ± 3.1 km3 erupted in the last 2.4 Myr, which leads to an average eruption rate of ∼ 0.003 km3/kyr, and an average volume per eruptive unit of < 0.1 km3. The dominant lava type is andesite (2.1 ± 0.9 km3), followed by absarokite (1.6 ± 0.8 km3), basaltic andesite (1.2 ± 0.5 km3), basic hornblende lamprophyre (1.0 ± 0.4 km3), and minette (0.9 ± 0.5 km3). Thus, the medium-K andesite and basaltic andesite comprise approximately half (49%) of the erupted magma, with twice as much andesite as basaltic andesite, and they occur in close spatial and temporal association with the highly potassic, lamprophyric lavas. There is no time progression to the type of magma erupted. A wide variety of evidence indicate that the high-MgO (8–9 wt.% ) basaltic andesites (52–53% wt.% SiO2) were formed by H2O flux melting of the asthenopheric arc mantle wedge, whereas the mafic minettes and absarokites were formed by partial melting (induced by thermal erosion) of depleted lithospheric mantle containing phlogopite-bearing veins. There is only limited differentiation of the potassic magmas, with none more evolved than 55.4 wt.% SiO2 and 4.4 wt.% MgO. This may be attributable to rapid crystallization of the mantle-derived melts in the deep crust, owing to their low volumes. Thus, the andesites (58–63 wt.% SiO2) are notable for being both the most voluminous and the most evolved of all lava types in the Mascota volcanic field, which is not consistent with their extraction from extensively crystallized (60–70%), low-volume intrusions. Instead, the evidence supports the origin of the andesites by partial melting of amphibolitized, mafic lower crust, driven by the emplacement of the minettes, absarokites, and the high-Mg basaltic andesites.  相似文献   

20.
Cinder cones at Crater Lake are composed of high-alumina basaltic to andesitic scoria and lavas. The Williams Crater Complex, a basaltic cinder cone with andesitic to dacitic lava flows, stands on the western edge of the caldera, against an andesite flow from Mount Mazama. Bombs erupted from Williams Crater contain cores of banded andesite and dacite, similar to those erupted during the climatic eruption of Mount Mazama.Major- and trace-element variations exhibit an increase in incompatible elements and a decrease in compatible elements, consistent with crystal fractionation of olivine, plagioclase, clinopyroxene, orthopyroxene, and magnetite. LREE patterns in the rocks are irregular; each successive basalt is enriched in LREE relative to the preceding andesite.Compositional variations in the magmas of the cinder cones suggest that three magmatic processes were involved, partial melting, fractional crystallization, and magma mixing. Partial melting of more than one source produced primary basaltic magma(s). Subsequent mixing and fractional crystallization produced the more differentiated basaltic to andesitic magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号