首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Two groups of fresh crushed Brazilian quartz grains (0.4–0.6 mm) were placed in 10 ml of various saturated salt solutions (sodium sulphate, sodium chloride, magnesium sulphate, sodium carbonate, and sodium carbonate and soil). One group was placed in an environmental cabinet programmed to simulate summer diurnal temperature and relative humidity values recorded in Wheeler Valley, a dry valley in southern Victoria Land, Antarctica. The other group was allowed to remain at normal laboratory conditions. Quartz grains from both groups were removed at pre-selected intervals for examination using the scanning electron microscope. After 50 hours chemical surface textures were formed on the quartz grains in all but the sodium sulphate solution. At the 140 hour interval all the salt solutions used were producing chemical surface textures on the quartz grains. This paper demonstrates that chemical surface textures can be produced on quartz grain surfaces by saturated salt solutions in a short period of time and may prove to be representative of chemical surface textures produced in a saturated saline environment.  相似文献   

2.
To try to resolve the conflicts surrounding the influence of salts on frost weathering, chalk cubes were immersed, separately, in solutions of sodium chloride, sodium sulphate, and magnesium sulphate at concentrations of 5·5 per cent and 12·5 per cent, in a mixed solution of sodium chloride and sodium sulphate, and in distilled water. The cubes were subjected to six freeze-thaw cycles with temperatures ranging from either +15 to — 10°C or + 15 to — 30°C. The results confirm that frost weathering can be enhanced by the presence of certain salts, but the degree of enhancement depends both on the concentration and type of salt and on the intensity of the freeze-thaw regime. Some, but not all, of the results can be explained by the phase changes that occur during the freezing of the salt solutions.  相似文献   

3.
Experiments are described in which chalk cubes were soaked in solutions of either sodium chloride, sodium sulphate, or magnesium sulphate at concentrations of 5·5 per cent and 12·5 per cent, or in a mixed solution of sodium chloride and sodium sulphate or in distilled water. After removal of excess liquid, the cubes were subjected to six freeze–thaw cycles with temperatures ranging from either +15 to ?10°C or +15 to ?30°C. The results confirm that frost weathering can be enhanced by the presence of certain salts, but the extent of weathering was much less than that previously reported for samples frozen totally immersed in the same liquids. Evidence is presented which suggests that salt crystallization is the major weathering process operative when non–immersed samples are frozen but a combination of frost and salt weathering operates when fully immersed samples are frozen.  相似文献   

4.
B. G. Katz 《水文研究》1989,3(2):185-202
During 1983 and 1984, wet precipitation was primarily a solution of dilute sulphuric acid, whereas calcium and bicarbonate were the major ions in springs and ground water in two small watersheds with a deciduous forest cover in central Maryland. Dominant ions in soil water were calcium, magnesium, and sulphate. The relative importance of mineral weathering reactions on the chemical composition of these subsurface waters was compared to the contribution from wet precipitation, biological processes, and road deicing salts. Mineral reaction models, developed from geochemical mass-balance relationships, involved reactions of primary and secondary minerals in metabasalt and metarhyolite with hydrogen ion. Geochemical weathering reactions account for the majority of total ion equivalents in soil water (46 per cent), springs (51 per cent), and ground water (68 to 77 per cent). The net contribution of total ion equivalents from biological processes was 20 and 16 per cent for soil water and springs, respectively, but less than 10 per cent for ground water. The contribution of total ion equivalents from deicing salts (10 to 20 per cent) was related to proximity to roads. Strong acids in precipitation contributed 44 per cent of the total amount of hydrogen ions involved in mineral-weathering reactions for ground water in contact with metarhyolite compared to 25 per cent for ground water in contact with metabasalt, a less resistant rock type to weathering.  相似文献   

5.
Field observations of shoreline conditions at Hyrum Reservoir, Utah, were conducted during the summers of 1991 to 1993. A process of bluff retreat is described for a multiple-layered bluff environment of sand and clay layers. Failure is initiated by wetting and drying of clay sediments, which produces horizontal cracks within bluff material. These cracks appear to penetrate to a depth of approximately 100-150 mm before initiating vertical cracking in the sediments. The vertical cracks are propagated by continued drying of the surface sediment, ultimately leading to failure of the bluff material. The physical dimensions of sediment blocks succumbing to this mechanism range from a few hundred millimetres up to 3 m on a side, with a depth of approximately 100-150 mm. The mechanism described here appears to operate optimally when the supply of subsurface moisture is abundant and nearly continuous throughout the spring and early summer. Reservoir draw-down, large capillary fringe effects in the bluff and periodic wetting from upslope undrained hollows are the dominant moisture controls at this site. Moisture delivery to the face is strongly influenced by anisotropy of saturated hydraulic conductivity in the alternating clay and sand layers and related differences in sediment texture.  相似文献   

6.
Current conceptual runoff models hypothesize that stormflow generation on the Canadian Shield is a combination of subsurface stormflow and saturation overland flow. This concept was tested during spring runoff in a small (3.3 ha) headwater basin using: (1) isotopic and chemical hydrograph separation and (2) field mapping and direct tracing of saturated areas. Isotopic and chemical hydrograph separation indicated three runoff components: (1) pre-melt subsurface flow; (2) subsurface flow of new (event) water; and (3) direct precipitation on to saturated areas (DPS). During early thaw-freeze cycles, their relative contributions to total flow remained constant (65 per cent, 30 per cent, and 5 per cent respectively). It is hypothesized that lateral flow along the bedrock/mineral soil interface, possibly through macropores, supplied large volumes of subsurface flow (of both old and new water) rapidly to the stream channel. Much higher contributions of DPS were observed during an intensive rain-on-snow event (15 per cent of total flow). Mapping and direct tracing of saturated areas using lithium bromide, suggested that saturated area size was positively correlated to stream discharge but its response lagged behind that of discharge. These observations suggest that the runoff mechanisms, and hence the sources of stream flow, will vary depending on storm characteristics.  相似文献   

7.
The processes of stormflow generation were studied in a hill pasture catchment near Hamilton, New Zealand. Although rainfall was relatively evenly distributed throughout the year, stormflow was highly seasonal and over 65 per cent occurred during the winter. Three main processes contributing to stormflow were identified which could be related to soil type and physiographic position. On gleyed soils derived from rhyolitic colluvium, saturation overland flow was the dominant process. Hydrographs from ‘Whipkey’ throughflow troughs also indicated that there was a subsurface response (saturated wedge) from this soil type. On steeper convex slopes, more permeable soils were derived from weathered greywacke. The presence of ephemeral springs on the hillslopes and direct observation during storm events indicated that storm runoff was generated as return flow from this soil. It was noted that nitrate concentrations from subsurface sources were 5–10 times higher than surface runoff. This difference in concentration was utilized in a chemical mixing equation which partitioned stormflow sources. This was compared with the stormflow predicted from rain falling on to saturated areas. There was good agreement between the two models for winter-spring events with respect to the volumes of surface runoff predicted, however the saturated areas model underestimated total stormflow. The results of the study are briefly discussed in terms of the potential for water quality management.  相似文献   

8.
A precise photogrammetric technique was used to determine the microtopography of seven 2.6 m × 1.2 m experimental units located on a hillslope. Surface elevations were determined with an accuracy of better than 1 mm, from which contours at 2mm intervals were interpolated. These contour plots were then manually interpreted to define depressions and associated storage volumes. Analysis of the results highlighted the complex variability of depression storage over the hillslope, for example there being little relation between depression storage volumes and unit slope. This study also highlights the sampling problem for the measurement of depression storage on natural surfaces, which appears not to have been formally recognized previously, and also emphasizes the practical difficulty of achieving depression storage estimates with coefficients of variation less than ten per cent to 50 per cent, much of this variability being due to problems of interpretation rather than measurement of the surface.  相似文献   

9.
Micro- and macroscale experiments which document the dynamics of salt damage to porous stone have yielded data which expose weaknesses in earlier interpretations. Previously unexplained differences are found in crystal morphology, crystallization patterns, kinetics and substrate damage when comparing the growth of mirabilite (Na2SO4. 10H2O) and thenardite (Na2SO4) versus halite (NaCl). The crystallization pattern of sodium sulphate was strongly affected by relative humidity (RH), while a lesser RH effect was observed for sodium chloride. Macroscale experiments confirmed that mirabilite (crystallizing at RH > 50 per cent) and thenardite (crystallizing at RH < 50 per cent) tend to form subflorescence in highly localized areas under conditions of constant RH and temperature. This crystallization pattern was more damaging than that of halite, since halite tended to grow as efflorescence or by filling the smallest pores of the stone in a homogeneous fashion, a result which contradicts Wellman and Wilson's theoretical model of salt damage. Low RH promoted rapid evaporation of saline solutions and higher supersaturation levels, resulting in the greatest damage to the stone in the case of both sodium sulphate and sodium chloride crystallization. At any particular crystallization condition, sodium chloride tended to reach lower supersaturation levels (resulting in the crystallization of isometric crystals) and created negligible damage, while sodium sulphate reached higher supersaturation ratios (resulting in non-equilibrium crystal shapes), resulting in significant damage. ESEM showed no damage from sodium sulphate due to hydration. Instead, after water condensation on thenardite crystals, rapid dissolution followed by precipitation of mirabilite took place, resulting in stone damage by means of crystallization pressure generation. It is concluded that salt damage due to crystallization pressure appears to be largely a function of solution supersaturation ratio and location of crystallization. These key factors are related to solution properties and evaporation rates, which are constrained by solution composition, environmental conditions, substrate properties, and salt crystallization growth patterns. When combined with a critical review of salt damage literature, these experiments allow the development of a model which explains variations in damage related to combinations of different salts, substrates and environmental conditions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Stone surfaces are sensitive to their environment. This means that they will often respond to exposure conditions by manifesting a change in surface characteristics. Such changes can be more than simply aesthetic, creating surface/subsurface heterogeneity in stone at the block scale, promoting stress gradients to be set up as surface response to, for example, temperature fluctuations, can diverge from subsurface response. This paper reports preliminary experiments investigating the potential of biofilms and iron precipitation as surface‐modifiers on stone, exploring the idea of block‐scale surface‐to‐depth heterogeneity, and investigating how physical alteration in the surface and near‐surface zone can have implications for subsurface response and potentially for long‐term decay patterns. Salt weathering simulations on fresh and surface‐modified stone suggest that even subtle surface modification can have significant implications for moisture uptake and retention, salt concentration and distribution from surface to depth, over the period of the experimental run. The accumulation of salt may increase the retention of moisture, by modifying vapour pressure differentials and the rate of evaporation. Temperature fluctuation experiments suggest that the presence of a biofilm can have an impact on energy transfer processes that occur at the stone surface (for example, buffering against temperature fluctuation), affecting surface‐to‐depth stress gradients. Ultimately, fresh and surface‐modified blocks mask different kinds of system, which respond to inputs differently because of different storage mechanisms, encouraging divergent behaviour between fresh and surface‐modified stone over time. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The relevance of bypass flow on water flow, solute or pesticide transport is becoming increasingly recognized. Recent investigations proved that soil salinization may be influenced by bypass flow, i.e. the rapid transport of water and solutes via macropores and/or shrinkage cracks to subsoil and groundwater. This paper explores the role of bypass flow in the process of accumulation and leaching of solutes, as well as of sodium, in a Mediterranean cracking soil irrigated with saline/sodic waters. The results of bypass flow experiments performed on undisturbed soil cores showed that leaching of solutes occurred in concomitance with bypass fluxes when a low salinity solution was alternated with a high salinity solution. Exchange of solutes between the incoming solution and the soil matrix occurred during the bypass flow events at the contact surfaces (cracks walls) between the solution and the soil matrix and where cracks terminated in the soil samples. Concomitant exchanges of sodium were indicated by measurements performed in the effluent solution during the bypass flow measurements. The amount of Sodium released from the soil during the bypass flow events, as well as that of the soluble salts leached from the soil, were found to depend on the degree of soil cracking. These results indicated that:
  • 1 in management of irrigation in cracking soils, under the occurrence of bypass fluxes, alternating a low salinity/sodicity water with a high salinity/sodicity solution can be effective for preventing salinization and sodification:
  • 2 greater efficiency of removal of sodium/soluble salts can be obtained if application of the leaching solution is performed when the soil is at a considerable degree of cracking.
Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
The output of material from 11 small drainage basins in the Keuper region of central Luxembourg is considered. Attention is given to differences between forested and cultivated basins. Whilst the output of suspended solids from the cultivated Mosergriecht catchment may be as much as five times higher than from the forested Keiwelsbaach, the solute load is only 50 per cent and the runoff 20 per cent higher. Relationships between dispersed clay in suspension and the water chemistry observed for the forested drainage basins are not present in the cultivated catchments. Water having a milky appearance and containing dispersed clay is of more frequent occurrence in forested basins where subsurface runoff occurs in macropores and cracks in the undisturbed soil.  相似文献   

13.
Fire has long been recognized as an agent of rock weathering. Our understanding of the impact of fire on stone comes either from early anecdotal evidence, or from more recent laboratory simulation studies, using furnaces to simulate the effects of fire. This paper suggests that knowledge derived from simulated heating experiments is based on the pre‐conceptions of the experiment designer – when using a furnace to simulate fire, the operator decides on the maximum temperature and the duration of the experiment. These are key factors in determining the response of the stone to fire, and if these are removed from real‐world observations then knowledge based on these simulations must be questioned. To explore the differences between heating sandstone in a furnace and a real fire, sample blocks of Peakmoor Sandstone were subjected to different stress histories in combination (lime rendering and removal, furnace heating or fire, frost and salt weathering). Block response to furnace heating and fire is discussed, with emphasis placed on the non‐uniformity of the fire and of block response to fire in contrast to the uniform response to surface heating in a furnace. Subsequent response to salt weathering (by a 10% solution of sodium chloride and magnesium sulphate) was then monitored by weight loss. Blocks that had experienced fire showed a more unpredictable response to salt weathering than those that had undergone furnace heating – spalling of corners and rapid catastrophic weight loss were evidenced in blocks that had been subjected to fire, after periods of relative quiescence. An important physical side‐effect of the fire was soot accumulation, which created a waxy, relatively impermeable layer on some blocks. This layer repelled water and hindered salt ingress, but eventually detached when salt, able to enter the substrate through more permeable areas, concentrated and crystallized behind it, resulting in rapid weight loss and accelerated decay. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
A one-day field investigation on an unvegetated backbeach documents the importance of surface sediment drying to aeolian transport. Surface sediments were well sorted fine sand. Moisture content of samples taken in the moist areas on the backbeach varied from 2·9 to 9·2 per cent. Lack of dry sediment inhibited transport prior to 08:50. By 09:10 conspicuous streamers of dry sand moved across the moist surface. Barchan-shaped bedforms, 30 to 40 mm high and composed of dry sand (moisture content <0·10 per cent), formed where sand streamers converged. The surface composed of dry sand increased from 5 per cent of the area of the backbeach at 09:50 to 90 per cent by 12:50 Mean wind speeds were beetween 5·6 and 8·6 m s−1 at 6 m above the backbeach. Corresponding shear velocities were always above the entrainment threshold for dry sand and below the threshold for the moist sand on the backbeach. Measured rates of sand trapped (by vertical cylindrical traps) increased during the day relative to calculated rates. The measured rate of sand trapped on the moist foreshore was higher than the rate trapped on the backbeach during the same interval, indicating that the moist foreshore (moisture content 18 per cent) was an efficient transport surface for sediment delivered from the dry portion of the beach upwind. Measured rates of sand trapped show no clear relationship to shear velocities unless time-dependent surface moisture content is considered. Results document conditions that describe transport across moist surfaces in terms of four stages including: (1) entrainment of moist sediment from a moist surface; (2) in situ drying of surface grains from a moist surface followed by transport across the surface; (3) entrainment and transport of dry sediment from bedforms that have accumulated on the moist surface; and (4) entrainment of sand from a dry upwind source and transport across a moist downwind surface. © 1997 John Wiley & Sons, Ltd.  相似文献   

15.
‘The wick effect’ is the upward migration of saline solutions into rocks and their subsequent crystallization. Lower Carboniferous sandstone blocks of rectangular shape have been subjected to this process in the laboratory using a range of salt types, a range of salt concentrations, and various mixtures of salts. Some treatments produced severe disintegration, notably sodium carbonate and a mixture of sodium carbonate with magnesium sulphate, whereas other salts (including sodium chloride and gypsum) were much less effective. The debris produced by this experimental salt weathering included appreciable quantities of silt-sized material, which were analysed with a laser granulometer. Such material could provide a source for desert loess.  相似文献   

16.
Inquiry into the dissolution kinetics of naturally occurring geologic materials, rather than individual mineral species, has been relatively neglected. This is especially true of surface processes, the realm of surface water hydrology and geomorphology. This paper focuses attention at a laboratory study of the rate of such complex reactions. Functions defining the dissolution rates of saline (0.1–20 per cent salt content) Mancos Shale-associated alluvium in distilled water follow varying patterns. Dissolution is characterized by an initial (<5 min) high rate constant, by a following phase (20 min-57 h) where rates are reduced drastically, and by a final period of encroachment to equilibrium. Initial dissolution rates increase with increase in salt content and sediment: water ratio. The time necessary to approach equilibrium is, however, found to be directly proportional to the sediment; water ratio. The concentration of Na+, Mg2+, Ca2+, SC2?4 and HCO?3, and the relative abundance of Ca2+ and HCO?3 increase continuously with contact time, indicating that the hydrated sodium and magnesium sulphate minerals provide most of the initial solutes, though not necessarily most of the total solute bulk. The results obtained in this study indicate that the high initial dissolution rate of soluble minerals from alluvium, and particularly from shales in contact with aqueous solutions, is too short-lived to account for most of the solutes occurring in heavily sediment-laden surface flow. Excluding input from slower, usually supersaturated subsurface flow, dissolution from sediment in transport should be a major source of solutes in originally undersaturated and kinetically unequilibrated surface water in semiarid and arid regions.  相似文献   

17.
Despite considerable research performed on forested catchments in the Ouachita Mountains of Oklahoma and Arkansas, little information on hydrological processes in operation is available. Based on catchment physical characteristics, subsurface flow was thought to be an important hydrological process in the region. Therefore, this study was undertaken to determine the occurrence, rates, timing and volumes of subsurface flow, and to estimate the importance of subsurface flow as a streamflow generating process. Subsurface flow was collected from three hillslope sites on a 7.7 ha forested catchment. Hillslope sites drained through natural seepage faces located near stream channels. Subsurface flow was collected from three depths at each hillslope site, below the litter layer, below the a horizon, and within the B horizon (Bt21). Subsurface flow occurred and was measured during 11 of 31 rainfall events. Subsurface flow responded rapidly to the initiation of and to changes in intensity of rainfall at all depths. the rapid response was indicative of flow through soil macropores. B horizon subsurface flow commenced within 10 to 180 min of the initiation of rainfall. Multiple linear regression showed that the volume of subsurface flow generated during a given storm was directly related to rainfall depth and a 7-day antecedent precipitation index used to represent antecedent water content. About 67 per cent of the total subsurface flow collected during the study was produced in one large storm under wet antecedent conditions. the storm was equal to the 2-year, 24-hour storm for the region. Measured subsurface flow volumes were extended to the watershed scale to provide estimates of catchment-wide contributions to streamflow. It was estimated that subsurface flow contributed from 1 to 48 per cent of total quickflow measured at the catchment outlet. Based on the timing of subsurface flow, it was estimated that subsurface flow May, contribute up to 70 per cent of quickflow before and soon after peak flow.  相似文献   

18.
Preliminary results from a continuing series of laboratory experiments designed to examine the combined effects of salt and frost weathering indicate that some salts greatly enhance the breakdown of rocks by frost. Samples of Ardingly Sandstone from southeast England were soaked in saturated solutions of sodium chloride or sodium sulphate and subjected to alternating cycles of freezing and thawing. Rapid disintegration of the sandstone occurred within twenty cycles, in each of the salt solutions. In contrast, samples subjected to freezing and thawing in deionized water suffered very little damage unless they were saturated under vacuum. When samples were subjected to twenty cycles of wetting and drying at temperatures above 0°C, those soaked in deionised water or sodium chloride suffered no appreciable damage but those soaked in sodium sulphate rapidly disintegrated. Tentative explanations of these results are offered. The enhancement of frost weathering by salt appears to have been overlooked by many writers yet it is likely to be an important geomorphological process in those areas of mid and high latitudes where rocks are saturated with sodium salts.  相似文献   

19.
Karst solution processes are investigated on Oligocene limestones in the Waitomo district, west central North Island, New Zealand. Estimates of the inputs, throughputs and outputs of water and dissolved calcium and magnesium in two drainage basins were used to establish the rate of limestone solution by autogenic waters. The best estimate for solution loss from the basins during the study year is 69 m3/km2. The potential measurement errors inherent in each parameter used in the erosion rate computations were assessed and the probable maximum and minimum erosion rates were estimated to be 88 and 61 m3/km2. In both basins approximately 67 per cent of the annual solute load is transported by flows greater than the mean annual discharge, over 15 per cent being transported by flood flows that are exceeded only 5 per cent of the time. Almost half of the annual load is transported during the three winter months (June-August), but no one month accounts for more than 18 per cent or less than 2.7 per cent of the annual total. Approximately 37 per cent of solution takes place within the soil profile, and most of the remainder is concentrated in 5–10 m of weathered bedrock (the subcutaneous zone) beneath this. Thus, it is likely that at least 85 per cent of the total solutional erosion contributes to the surface lowering of soil and bedrock.  相似文献   

20.
A sediment budget was developed for the 1.7 km2 Maluna Creek drainage basin located in the Hunter Valley, New South Wales, Australia, for the period 1971-86. the impact of viticulture, which commenced at Maluna in 1971, was studied using erosion plots, with caesium-137 as an indicator of both soil erosion and sedimentation. Two methods were used to estimate vineyard soil losses from caesium-137 measurements. Sediment output from the catchment was measured for three years, and extrapolated from readings taken at a nearby long-term stream flow gauging station for the remaining 13 years. Relative amounts of soil loss from forest (60 per cent basin area), grazing land (30 per cent) and vineyards (10 per cent) were calculated. Soil losses by rain splash detachment were ten times greater from bare/cultivated sufaces than from the forest. Erosion plots of area 2 m2 showed no significant differences in soil loss between forest and grassland but, under bare soil, losses were 100 times greater. the 137Cs method was employed to calculate net soil loss from all vineyard blocks using both a previously established calibration curve and a proportional model. the latter method gave estimates of soil loss which were 3-9 times greater than by the calibration curve, and indicated that average soil losses from the vineyard were equivalent to 62 t ha?1 y?1 (1971-86). It was estimated that the forest contributed 1-8 per cent, the grazing land 1.6 per cent, and the vineyard 96.6 per cent of the total soil loss during that period. Sediment storages within the fluvial system adjacent to the vineyard ws 9460 t for the period, whereas sediment output was equivalent to 215 t km?1 y?1. Independent measurements of soil erosion, storage, and output showed that 56 per cent of the eroded sediment remained in the catchment, and 34 per cent was transported out by Maluna Creek. the budget was able to be balanced to within 10 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号