首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
天山托木尔峰地区青冰滩72号冰川表面运动速度特征研究   总被引:9,自引:6,他引:3  
托木尔峰地区是天山最大的冰川分布区,是阿克苏地区主要水资源补给地.一直以来,该区冰川运动资料空白,严重阻碍了对冰川水资源现状及未来变化评估工作的开展.鉴于以上情况,中国科学院天山冰川站在2008年8月到2009年8月3次开展了对天山托木尔峰青冰滩72号冰川表面运动速度的观测,获得了冰川表面运动速度特征变化状况.结果表明...  相似文献   

2.
Lobate talus slopes in the Deboullie Lakes Ecological Reserve (DLER) of northern Maine exhibit parabolic profiles characteristic of inactive and relict talus‐derived rock glaciers. Vegetated rock glacier surfaces suggest that the landforms are no longer active, and lobes comprising two DLER rock glaciers document periods of past growth. Observations of perennial subsurface ice are supported by datalogger temperature measurements, indicating that sporadic permafrost exists throughout the DLER. We compare the DLER rock glaciers, along with similar features elsewhere in New England and adjacent Québec, to the modern alpine permafrost distribution. Results indicate that a mean annual temperature cooling of ~6°C is required to promote active rock glacier growth. Ages of plant remains recovered from the basal sediments of a local pond constrain deglaciation to before 11 320 14C a BP, and core stratigraphy and organic content reveal that a periglacial environment persisted during the early postglacial era. Thus, we hypothesise that the DLER rock glaciers were active during Lateglacial time despite the lack of glacier activity in the region. We take this to suggest that north‐eastern US rock glaciers formed in response to mean annual temperatures skewed towards the frigid winters of the Younger Dryas chronozone. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.  相似文献   

4.
In the Schiantala Valley of the Maritime Alps, the relationship between a till-like body and a contiguous rock glacier has been analyzed using geomorphologic, geoelectric and ice-petrographic methodologies. DC resistivity tomographies undertaken in the till and in the rock glacier show the presence of buried massive ice and ice-rich sediments, respectively. Ice samples from a massive ice outcrop show spherical gas inclusions and equidimensional ice crystals that are randomly orientated, confirming the typical petrographic characteristics of sedimentary ice. The rock glacier formation began after a phase of glacier expansion about 2550 ± 50 14C yr BP. Further ice advance during the Little Ice Age (LIA) overrode the rock glacier root and caused partial shrinkage of the pre-existing permafrost. Finally, during the 19th and 20th centuries, the glacial surface became totally debris covered. Geomorphological and geophysical methods combined with analyses of ice structure and fabric can effectively interpret the genesis of landforms in an environment where glaciers and permafrost interact. Ice petrography proved especially useful for differentiating ice of past glaciers versus ice formed under permafrost conditions. These two mechanisms of ice formation are common in the Maritime Alps where many sites of modern rock glaciers were formerly occupied by LIA glaciers.  相似文献   

5.
Considerable uncertainty surrounds the timing of glacier advance and retreat during the Younger Dryas or Loch Lomond Stade (LLS) in the Scottish Highlands. Some studies favour ice advance until near the end of the stade (c. 11.7 ka), whereas others support the culmination of glacier advance in mid‐stade (c. 12.6–12.4 ka). Most published 10 Be exposure ages reported for boulders on moraines or deglacial sites post‐date the end of the LLS, and thus appear to favour the former view, but recalibration of 33 10 Be ages using a locally derived 10 Be production rate and assuming rock surface erosion rates of zero to 1 mm ka?1 produces exposure ages 130–980 years older than those originally reported. The recalibrated ages are filtered to exclude anomalous data, and then employed to generate aggregate probability density distributions for the timing of moraine deposition and deglaciation. The results suggest that the most probable age for the timing of the deposition of the sampled outermost moraines lies in the interval 12.4–12.1 ka or earlier. Deglacial ages obtained for sites inside Loch Lomond Stadial glacier limits imply that glaciers at some or all of the sampled sites were retreating prior to 12.1 ka. Use of aggregated data does not exclude the possibility of asynchronous glacier behaviour at different sites, but confirms that some glaciers reached their maximum limits and began to retreat several centuries before the rapid warming that terminated the LLS at 11.7–11.6 ka, consistent with the retrodictions of recent numerical modelling experiments and with geomorphological evidence for gradual oscillatory ice‐margin retreat under stadial conditions.  相似文献   

6.
Iceland's glaciers are particularly sensitive to climate change, and their margins respond to trends in air temperature. Most Icelandic glaciers have been in retreat since c. 1990, and almost all since 1995. Using ice‐front measurements, photographic and geomorphological evidence, we examined the record of ice‐front fluctuations of Virkisjökull–Falljökull, a steep high‐mass‐turnover outlet glacier in maritime SE Iceland, in order to place recent changes in a longer‐term (80‐year) context. Detailed geomorphological mapping identifies two suites of annual push moraines: one suite formed between c. 1935 and 1945, supported by lichenometric dating; the other between 1990 and 2004. Using moraine spacing as a proxy for ice‐front retreat rates, we show that average retreat rates during the 1930s and 1940s (28 m a?1) were twice as high as during the period from 1990 to 2004 (14 m a?1). Furthermore, we show that both suites of annual moraines are associated with above‐average summer temperatures. Since 2005, however, retreat rates have increased considerably – averaging 35 m a?1 – with the last 5 years representing the greatest amount of ice‐front retreat (~190 m) in any 5‐year period since measurements began in 1932. We propose that this recent, rapid, ice‐front retreat and thinning in a decade of unusually warm summers has resulted in a glaciological threshold being breached, with subsequent large‐scale stagnation of the glacier terminus (i.e. no forward movement) and the cessation of annual push‐moraine formation. Breaching this threshold has, we suggest, caused further very rapid non‐uniform retreat and downwasting since 2005 via a system feedback between surface melting, glacier thinning, decreased driving stress and decreased forward motion.  相似文献   

7.
赵银  张勇  刘时银  王欣 《冰川冻土》2022,44(3):930-945
青藏东南部海洋型冰川具有独特的气候敏感性,普遍呈现加速退缩趋势,这不仅影响区域水资源安全,而且伴生了相应的冰川灾害,是当前青藏高原冰冻圈变化研究的热点区域之一。本文对海洋型冰川物质平衡时空变化特征进行了综述,2000年以来冰川总体处于物质亏损状态,其平均物质平衡介于-0.66~-0.61m w.e.·a^(-1)之间;同时总结了海洋型冰川物质加速变化的驱动因素以及新特征。当前海洋型冰川物质平衡变化研究受观测数据缺乏和模型模拟不确定性等问题限制,尤其现有模型对冰面裂隙增多与扩张、冰崖-冰面湖-表碛相互作用、冰内冰下过程、冰崩、末端冰湖水-冰相互作用等过程的描述过于简化或基本缺失,其机理及影响仍存在较大的不确定性。未来需加强海洋型冰川物质平衡的综合监测,基于多数据和多方法的集成研究提高模型对冰川物质平衡多物理过程的耦合与模拟能力,为开展海洋型冰川物质变化的区域水资源效应和致灾效应研究奠定基础。  相似文献   

8.
Rock glaciers are an end unit of the coarse debris system that links frost weathering and rockfall to debris transport in mountainous environments. By examining topographic and climatic controls on creep, a better understanding of rock glacier formation and evolution could be obtained. A series of statistical tests were run comparing contributing area parameters (width, length, area, slope, headwall height, etc.) and rock glacier variables (width, length, area, thickness, slope, creep and temperature) in the Front Range of Colorado. Results showed that rock glacier width had the strongest correlation with contributing area width due to an abundance of lobate rock glaciers (r = 0.78). Rock glacier area and contributing area size were also related (r = 0.74), but are also a function of talus production factors. Mean surface velocity appears to be better correlated with thickness (r = 0.58) and length (r = 0.62), rather than slope (r = 0.33). Mean annual air temperature had a stronger exponential relationship with maximum velocities (r = 0.76) compared to mean annual velocity (r = 0.60). Front Range rock glacier velocities tend to decrease with warming, suggesting that the volume of ice and debris, rates of shear in plastic layers, or melt water may have a greater influence on deformation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
During decline of the last British–Irish Ice Sheet (BIIS) down‐wasting of ice meant that local sources played a larger role in regulating ice flow dynamics and driving the sediment and landform record. At the Last Glacial Maximum, glaciers in north‐western England interacted with an Irish Sea Ice Stream (ISIS) occupying the eastern Irish Sea basin (ISB) and advanced as a unified ice‐mass. During a retreat constrained to 21–17.3 ka, the sediment landform assemblages lain down reflect the progressive unzipping of the ice masses, oscillations of the ice margin during retreat, and then rapid wastage and disintegration. Evacuation of ice from the Ribble valley and Lancashire occurred first while the ISIS occupied the ISB to the west, creating ice‐dammed lakes. Deglaciation, complete after 18.6–17.3 ka, was rapid (50–25 m a?1), but slower than rates identified for the western ISIS (550–100 m a?1). The slower pace is interpreted as reflecting the lack of a calving margin and the decline of a terrestrial, grounded glacier. Ice marginal oscillations during retreat were probably forced by ice‐sheet dynamics rather than climatic variation. These data demonstrate that large grounded glaciers can display complex uncoupling and realignment during deglaciation, with asynchronous behaviour between adjacent ice lobes generating complex landform records.
  相似文献   

10.
The existence of a small population of ‘relict rock glaciers’ scattered across the main British mountain areas has previously been inferred from published cases of individual sites or local clusters. Discrete debris accumulations (DDAs) of widely differing character have been identified as ice‐debris landforms (whether ‘rock glaciers’ or ‘protalus lobes’) partly from morphological, sedimentological and topo‐locational evidence, but principally by analogy with both active and relict examples in present‐day arctic/alpine environments, with consequent palaeoclimate inferences. However, re‐interpretation of several supposed rock glaciers as rock slope failures has cast doubt on both the palaeoclimatic reconstructions and the origin of the remaining features. Issues of polygenesis and mimicry/equifinality have contributed to some previous misidentifications. We re‐evaluate the 28 candidate cases based on new field and image‐analysis evidence and place them on a continuum from no ice presence through passive ice presence and glacial shaping to emplacement onto glacier ice with consequent melt‐out topography. A null hypothesis approach (that there are no relict rock glaciers in the British mountains) is pursued, and the evidence indicates that none of the 28 cases clearly warrants classification as a relict rock glacier; their characteristics can be explained without recourse to any significant forward debris movement controlled or facilitated by incorporated or underlying ice as it deforms and melts out. However, only one‐third of the candidate DDAs are attributed in whole or part to rock slope failure (sensu stricto), with other debris sources including incremental rockfall, bedrock knolls with coarse debris veneer, protalus rampart and moraine. A few cases deserve more detailed investigation of their structure, morphology and sediments within a broader local glaciological/topographical context, with multitemporal/polygenetic evolution in mind. But it is for future researchers to demonstrate that deforming ice played an incontestable part in shaping these often enigmatic DDAs, given that other causes are simpler and commoner. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Rock avalanches are common in the Mont Blanc massif, which is bordered by valleys with large resident and tourist populations and important highways. This paper combines historical data with detailed geomorphological mapping, stratigraphic observation, and absolute and relative dating, to interpret several deposits resulting from rock avalanching onto glaciers.Nineteen rock falls and rock avalanches are described, ranging in volume from 10,000 m3 to 10 × 106 m3. They occurred between 2500 BP and AD 2007 at six sites. The events at three sites (Miage and Drus Glaciers, and Tour des Grandes Jorasses) are characterised by short travel distances; those at Brenva, Triolet, and Frébouge Glaciers exhibit excessive travel distances.Interactions between rock avalanches and glaciers are of four types: (i) rock-avalanche triggering, where glacial and paraglacial controls include debuttressing of rockwalls due to glacier thinning and retreat, oversteepening of rock slopes by glacial erosion, and effects of glaciers on permafrost; (ii) rock-avalanche mobility, in which mobility and travel distance are modified by channelling of rock-avalanche debris by moraines and valleys, incorporation of ice and snow (often >50% for large events), and irregularities on the glacier surface; (iii) deposit sedimentology, where melting of incorporated ice transforms the final deposit by reducing its thickness typically to <5 m, and debris of variable thicknesses is juxtaposed in a hummocky deposit with chaotic piles of angular rock debris; and (iv) glacier dynamics where insulating debris deposited upon a glacier produces a debris-covered glacier of different dynamics, and high elevated scars can favour the formation of small glaciers.  相似文献   

12.
Geomorphological mapping of locally nourished glaciers was conducted in four glens in the southeastern Monadhliath Mountains, Scotland. Three glaciers are interpreted to be of Younger Dryas age based on geomorphological similarity to features in other Scottish upland areas known to have been glaciated during the Younger Dryas, and on comparison to adjacent ice‐free areas in the lower glens where landform‐sediment assemblages typically reflect peri/paraglacial readjustment during the stadial. Here we reconstruct Younger Dryas glacier termini based on moraine alignments and associated geomorphological and sedimentological evidence. An adjacent wide plateau area at high altitude may have permitted extensive ice accumulation, but no unequivocal geomorphological signature is evident. To establish upper glacier limits, a series of ice profiles are modelled. The results yield a range of realistic glacier configurations bracketed between two distinct scenarios: a valley glaciation with the glaciers' upper limit on the plateau edge, and a low‐domed icecap centred on the plateau with ice flowing radially into the lower glens. Reconstructed equilibrium‐line altitudes are 795 m a.s.l. for the valley‐glacier scenario and 894 m a.s.l. for the icecap scenario. Calculated mean ablation‐season temperatures at the ELA are 1.2°C and 0.4°C for the valley‐glacier and the icecap scenario, respectively, from which we infer mean annual precipitation rates between 323 and 520 mm a?1. Palaeoclimate results indicate a stadial climate in central Scotland 65–79% more arid than at present, comparable to that of western Norway for the stadial and to the present‐day Canadian Arctic.  相似文献   

13.
Debris-covered glaciers are common in the Himalayas and play a key role in understanding future regional water availability and management. Previous studies of regional glacial changes have often neglected debris-covered glaciers or have mixed them with debris-free glaciers. In this study, we generated a new glacier data set that includes debris-covered and debris-free glaciers to study the glacial surface area change in the Koshi River Basin in the central Himalayas. Long time-series Landsat data were used to extract the glacier boundaries using automatic and manual classification methods. The glacial area decreased by 10.4% from 1975 to 2010 at a rate of 0.30% a?1, with accelerated melting since 2000 (0.47% a?1). Small glaciers melted faster than large glaciers. In terms of distinctive glacier types, debris-free glaciers shrank at a rate of 0.45% a?1, faster than debris-covered glaciers (0.18% a?1), while debris-covered glaciers larger than 5.0 km2 retreated at a rate faster than debris-free glaciers of the same-sized group. We also studied the potential interactions between 222 supraglacial lakes and debris-covered glaciers. Debris-covered glaciers with glacial lakes melt faster than glaciers without lakes. This study can improve our understanding of the differences in the changes between debris-covered and debris-free glaciers in the central Himalayas and help evaluate water resource changes in the Himalayas.  相似文献   

14.
张齐民  闫世勇  吕明阳  张露  刘广 《冰川冻土》2021,43(5):1594-1605
冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义。针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖亚洲高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。研究结果表明:优化后的偏移量跟踪算法极大地提高了运行效率;全局形变拟合估计、地形偏差校正及滤波降噪后,冰川运动分布形态更加直观,精度可达0.5 m;通过与准同期Landsat-8影像提取的冰川流速对比以及对非冰川区位移残差的统计分析,验证了GF-3影像在监测不同区域冰川流速结果方面的可靠性及适用性;GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。  相似文献   

15.
A proposal for the classification of accumulations formed at the foot of mountain slopes and glacier snouts is presented for South Spitsbergen. Simple (talus cones) and complex (protalus ramparts, protalus rock glaciers, moraine rock glaciers) landforms are distinguished. The homogeneity of the features deposited at the foot of mountain slopes on a bedrock as well as on a glacial ice is noted, although the latter are more easily destructed due to melting of the buried ice. A significance of the ice core (interstitial or glacial ice) for a development of protalus rock glaciers and moraine rock glaciers is emphasized.  相似文献   

16.
冰川动力学模式模型进展及研究   总被引:1,自引:1,他引:0  
王澄海  程蓉  赵文  孙超 《冰川冻土》2020,42(1):43-52
冰冻圈是气候系统中的一个重要圈层, 其中冰川又是冰冻圈的重要组成部分, 冰川、 尤其是山地冰川的本构方程和建模一直是冰川动力学的核心任务。首先, 简要回顾冰川模型的研究和发展, 简要介绍了基于Navier-Stokes方程耦合温度场的三维冰川模型。然后, 介绍了冰川建模过程中的常用的静水压力近似、 一阶近似、 浅冰近似等的基本概念, 总结了冰川的动力数值模式建立的主要方法, 对于常用的GLIMMER冰盖模式的物理框架及其应用进行了介绍。最后, 针对目前的简化模型难以准确地描述山地冰川的物理过程及其变化的问题, 提出了一个基于全Navier-Stokes方程的山地冰川模型及其动力框架、 边界条件处理的设想。本文可为建立、 发展冰川及冰架模型, 尤其建立和发展山地冰川模型提供基础知识和参考。  相似文献   

17.
基于青藏高原昆仑山玉珠峰冰川Core 1冰芯钻取过程中所获得的相关资料,揭示出在该冰芯钻取点处的冰川内部34.34~34.64 m深度段存在一个富含水冰层,其未冻水(液态水)具有承压性质,水头高度至少可达到8.54 m. 该富含水冰层的存在不仅对冰川温度场带来了极大的影响,而且使该层中δ18O记录趋于均一化. 通过分析,揭示出该富含水冰层中可溶杂质离子浓度明显高于其上部冰层中的可溶杂质离子浓度,这是富含水冰层在形成初期其上部粒雪层融水下渗所引起的可溶杂质离子淋溶的结果. 同时,研究表明玉珠峰冰川粒雪中可溶杂质离子的优先淋溶顺序为NO3-> Mg2+> Na+> Cl-> K+> SO42-> Ca2+> NH4+. 提出可利用最易淋溶离子的浓度与最不易淋溶离子的浓度之比值,来判断冰雪层中可溶杂质离子浓度峰值是否与淋溶有关. 结合青藏高原其他地点冰芯钻取过程中发现的富含水冰层状况,认为青藏高原冰川内部富含水冰层不是在整个冰川区域内呈层状分布,而是在冰川内部呈透镜状分布. 冰川内部富含水冰层的存在,表明其形成初期气候相对较暖. 最后,阐明了青藏高原冰川中富含水冰层的形成机理与演化过程,并预测了其潜在的灾害效应.  相似文献   

18.
冰川冰内及冰下水系研究综述   总被引:1,自引:0,他引:1  
冰内及冰下水系的形成与演化具有时空变化性,对冰川汇水储水及径流过程产生影响,与之紧密联系的冰下水文过程(水力状况)与冰川运动、冰川侵蚀及冰川洪水形成等过程息息相关。冰内及冰下水系空间结构和形态复杂,且不同于一般喀斯特水文系统,具有明显的季节变化性,其空间分布和水力状况会因外界水体输入(降水和冰雪融水)的变化而改变。冰内及冰下水系的变化通过影响汇流对冰川融水的径流过程产生影响,冰川区一些溃决洪水事件的发生与冰内及冰下蓄水的突然释放有很大关系。冰川蓄排水还通过改变冰下水力条件来影响冰川运动,反之冰川运动不仅影响蓄排水过程的转换效率,且通过改变冰川消融强度(冰体向下游消融区输送速率的变化)影响冰川排水系统的空间分布范围。在气候变暖及冰川变化的背景下,研究冰内冰下水系演化的时空特征及其影响具有重要科学意义。综述了目前国内外针对冰川冰内及冰下水系相关研究的进展及主要成果,并对该领域的研究前景进行了展望。  相似文献   

19.
天山庙尔沟平顶冰川的基本特征和过去24a间的厚度变化   总被引:14,自引:6,他引:8  
山岳冰川在20世纪出现的全面退缩以及在最近20 a的加速消融是近年来国际冰川与全球变化研究的热点问题之一.庙尔沟平顶冰川位于天山山脉的最东段,南、北、东外围为气候十分干燥的荒漠戈壁,高山冰川是哈密绿洲主要的水资源,其冰芯记录包含有起源于这一地区的沙尘暴信息.因此,对该冰川的研究一直为人们所关注.基于2004年和2005年对庙尔沟平顶冰川的考察和取得的冰芯资料,初步探讨了庙尔沟平顶冰川的基本特征和过去24 a间的厚度变化.  相似文献   

20.
祁连山老虎沟12号冰川运动特征分析   总被引:8,自引:5,他引:3  
以南方灵锐S82 GPS接收机为数据获取平台,借助RTK测量技术对均匀布设在祁连山老虎沟12号冰川表面的花杆网阵进行表面运动速度观测.2008年6—8月和2008—2009年整年的观测资料显示:2008—2009年间该条冰川表面流速最大值出现在海拔4 750~4 850 m,其中西支表面流速达到32.6 m.a-1,出现在海拔4830 m附近,东支表面流速达到32.4 m.a-1,出现在海拔4770 m附近.相比1959年的观测结果,该条冰川流速减慢了11%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号