首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
3.
The paper describes the development of a constitutive model for a poorly graded sand, which was used in geotechnical experiments on buried pipes (reported elsewhere). The sand was tested extensively in the laboratory to determine the state parameter constants. Triaxial tests on the sand included conventional drained triaxial compression tests, as well as more specialized shearing tests at constant mean effective stress and others at constant volume. Single element simulation of the triaxial tests was performed to validate the proposed constitutive model. The adopted model allowed non-linear elastic behaviour prior to yielding. After yielding of the sand, the state parameter-based model for the sand permitted non-associated plastic flow. Dilation and frictional strength were both dependent on the current value of the state parameter. The combination of laboratory testing and single element modelling resulted in the selection of a single set of material constants for the soil, which adequately described the full range of triaxial tests. Subsequently the model was applied to the problem of a plate loading test on the sand and the model predictions were compared with the test data.  相似文献   

4.
A new elastoplastic model is developed for rockfills within the general critical state framework incorporating the state parameter. Two state functions are proposed to characterize the evolution of volume dilation and strain softening of rockfills, and a modified breakage index based on the concept of Hardin's relative breakage is defined to describe the progressive crushing of rockfills. The nonassociated plastic flow rule is derived from a state dependent dilatancy equation, and it incorporates energy dissipation due to intrinsic nonlinear friction and particle breakage upon shearing. Thus, their couple effect on the plastic deviatoric and volumetric deformation of rockfills is taken into account in the current model. The numerical analyses are carried out for a series of drained triaxial tests on the modeled rockfills at various consolidation pressures and stress paths. The volume dilation/contraction and strain softening/hardening of rockfills are accurately predicted by the proposed model, and the particle breakage and nonlinear critical state shear strength of rockfills are also well captured. The research findings indicate that the current model is applicable to represent the complex stress–strain–volume change behavior of rockfills in general. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper ascertains the reasons for the numerical problems when the yield vertex non-coaxial model is implemented in the finite element analysis to predict the behaviour of complicated geotechnical engineering problems. The numerical problem, reflected in the failure of convergence in the non-linear solutions in ABAQUS, is likely to happen when a smaller non-coaxial plastic modulus is used. It is found that a large non-coaxial influence at the start of elastoplastic loading, which causes the predominance of non-coaxial plastic strain rate over the coaxial plastic strain rate in stress–strain responses, is the reason for the numerical problem. The original yield vertex non-coaxial model is modified to overcome the numerical problem. Instead of a constant non-coaxial plastic modulus in the original yield vertex non-coaxial model, the non-coaxial modulus is made a function of cumulative deviatoric plastic strain. It shows that the modified non-coaxial model retains the functions of the original non-coaxial model. Meanwhile, it overcomes the non-convergence problem when a smaller non-coaxial plastic modulus, representing a larger non-coaxial influence, is used.  相似文献   

6.
阎锡东  刘红岩  邢闯锋  李超  王东会 《岩土力学》2015,36(12):3489-3499
在冻融条件下岩石微裂隙中的水发生相变,体积膨胀,对微裂隙产生很大的冻胀力,当冻胀力超过岩石的抗拉强度时,微裂隙扩展。温度升高时,水又进入新的微裂隙,如此反复循环造成了岩石的损伤。据此,将岩石中的微裂隙等效为扁平状椭圆裂隙,基于断裂力学建立了单条微裂隙下裂隙扩展长度与冻胀力的关系,考虑岩石中微裂隙的分布,将岩石冻融条件下的应变分解为初始损伤应变、附加损伤应变和塑性应变,建立了弹塑性冻融损伤本构模型。最后,通过岩石冻融试验对该模型的合理性进行了验证,结果表明,该模型能够较好地模拟岩石在不同冻融次数下的应力-应变关系曲线。  相似文献   

7.
利用两种土石料三轴CD试验数据确定两组椭圆-抛物双屈服面模型参数,研究了模型参数? 、KG、n、h、m、M1、M2和pr分别单独变化(而其他参数保持不变)对模型所反映的土的应力-应变关系的影响。结果表明,土体的体积应变对参数h、m比较敏感;? 、KG、n对剪胀性土的体变影响较大,而对剪缩性土体变影响不明显;? 、KG、n、h和m对模型反映的强度没有影响;pr变化对体变和强度影响均较小。M1和M2对强度和体变均有显著影响,且M1和M2中的小值决定模型的强度。定义了灵敏度,即一种用于表示模型参数对其所反映的应力-应变的影响程度的参数。分析表明,不同的参数,其灵敏度差异很大;不同的土类,参数灵敏度差异也较大。实际应用时,对灵敏度大的参数取值应特别慎重。  相似文献   

8.
郭晓霞 《冰川冻土》2011,33(4):819-825
从Ramberg—Osgood模型的骨架曲线和滞回曲线出发,假定塑性中心的移动为直线,构造土体动力耗散函数,从热力学基本定律出发研究了土体动力耗散特性及动力变形机理.提出了反映筑坝堆石料动力特性的第1阌值应变和第2阈值应变,两个阈值应变主要受最大动剪切模量系数、指数及无黏性土的内摩擦角的影响.第1和第2阈值应变间屈服面...  相似文献   

9.
王秋生  周济兵 《岩土力学》2019,40(11):4178-4184
基于广义热力学基本理论,通过考虑塑性剪切变形产生的能量一部分以塑性自由能的形式储存,并且该部分自由能与超固结度相关,结合修正剑桥模型的热力学函数形式建立了适用于超固结土的自由能函数和耗散函数。该耗散函数与当前应力状态无关,相关联流动法则仍然适用。由建立的耗散函数和自由能函数,推导了弹塑性本构关系的屈服函数、流动法则、硬化定律。通过4种不同超固结土的试验结果和计算结果进行比较,验证了模型的合理性。  相似文献   

10.
A unified constitutive model for the behavior of frictional materials is described. The model is based on concepts from elasticity and plasticity theories. In addition to Hooke's law for the elastic behavior, the framework for the plastic behavior consists of a failure criterion, a nonassociated flow rule, a yield criterion that describes contours of equal plastic work, and a work-hardening/softening law. The functions that describe these components are all expressed in terms of stress invariants. The model incorporates twelve parameters which can all be determined from simple experiments such as isotropic compression and conventional triaxial compression tests. Validation of the model is achieved by comparison of predicted and measured stress-strain curves for various two- and three-dimensional stress-paths obtained for different types of frictional materials.  相似文献   

11.
岩石试件端面摩擦效应数值模拟研究   总被引:3,自引:0,他引:3  
试件端面摩擦效应直接影响试件内的塑性等效应变、侧向位移的分布和单元应力应变曲线。本文运用ANSYS中的接触单元模拟了平面应变状态下端面摩擦效应对塑性等效应变、侧向位移和单元应力应变曲线的影响,得到了不同摩擦系数时塑性等效应变及侧向位移的渐进变化形式。当接触面摩擦较小时,塑性等效应变图案为上下两个X形网络,侧向位移上下分布均匀;当接触面摩擦增大时,塑性等效应变网络向中部靠拢并且明显增大,侧向位移上下分布不均匀,中部较上下端面位移大;当试件端面侧向位移被限制,即摩擦力很大时,塑性等效应变网络变为一个X形局部化带,侧向位移分布更加不均匀,中部明显隆起。  相似文献   

12.
王秋生  王玉杰  张波  李亮 《岩土力学》2010,31(2):350-354
修正剑桥模型假设体积塑性功的一半转化为耗散能,一半转化为由塑性变形约束的自由能,但通常体积耗散能和塑性体积自由能并不相等。基于热力学理论,通过引进间隔应力比来表征体积塑性功和塑性体积自由能的比例关系,构建了一个土的体积硬化模型。由于岩土材料耗散函数与所处的应力状态有关,因此,需要应用非关联流动法则,修正剑桥模型是适合应用相关联流动法则的一个特例,也是所提出模型的一个特例。  相似文献   

13.
Nucleation and growth of kink bands   总被引:1,自引:0,他引:1  
The geometric and strain properties of an ideal kink band in a perfectly plastic material with one slip surface are determined and two plausible modes by which a kink band can grow while maintaining these properties are presented. The first mode involves change in the orientation of the boundary surface of the kink band as it broadens. In the second mode the initial orientation of this boundary surface is maintained during broadening.A theoretical model is proposed for kink band formation in three stages: first, in an elastically strained material with a suitably oriented planar anisotropy; a small nucleus is either present or develops, and grows in thickness by one or the other or by both of the growth modes; second, as some critical thickness is reached, this nucleus propagates longitudinally until the excessive elastic distortion surrounding its ends is sufficiently relieved, or until the boundary of the body is reached; and third, the band widens by lateral migration of its boundaries, most probably by mode 2 growth.It is proposed that the direction of longitudinal propagation—and hence the orientation of the kink band with respect to principal normal stress—is decided by the value of a, the kink angle, in the nucleus at the time the critical thickness for propagation is reached. A further proposal is that this value of a is in turn decided by a principle of maximum plastic work: the instantaneous increment in strain or in volume within a nucleus is always the one for which the instantaneous increment in plastic work is a maximum at constant deviatoric stress.Calculations based on this theory for the two growth modes working either separately or together as competing processes yield three models of kink band nucleation in reasonable agreement with published experimental data. The most appealing of these models physically is one in which early mode 1 growth is replaced by mode 2 growth as the increments in mechanical work for the two modes become equal.  相似文献   

14.
The constitutive model of sands is proposed to describe the characteristics of plastic behaviour for cyclic loadings. A non-associated flow rule is used and both yield function and plastic potential are generalized forms of the Modified Cam clay model. The hardening parameter is represented by the plastic work related to different portions of volumetric and deviatoric changes. The boundary surface is employed to describe the plastic strain within the yield surface. The directional independency of yield condition in triaxial compression and extension tests is extended to that in general stress states. Several drained and undrained cyclic tests are predicted and the comparison is made with experimental results. The proposed model is capable of representing the monotonic and cyclic behaviours of sands with reasonable accuracy. The simulation is performed for both included and excluded membrane penetration effects and it is suggested that the membrane penetration causes the significant influences on the results of undrained cyclic tests.  相似文献   

15.
The inelastic response of Tennessee marble is modelled by an elastic plastic constitutive relation that includes pressure dependence of yield, strain‐softening and inelastic volume strain (dilatancy). Data from 12 axisymmetric compression tests at confining pressures from 0 to 100 MPa are used to determine the dependence of the yield function and plastic potential, which are different, on the first and second stress invariants and the accumulated inelastic shear strain. Because the data requires that the strain at peak stress depends on the mean stress, the locus of peak stresses is neither a yield surface nor a failure envelope, as is often assumed. Based on the constitutive model and Rudnicki and Rice criterion, localization is not predicted to occur in axisymmetric compression although faulting is observed in the tests. The discrepancy is likely due to the overly stiff response of a smooth yield surface model to abrupt changes in the pattern of straining. The constitutive model determined from the axisymmetric compression data describes well the variation of the in‐plane stress observed in a plane strain experiment. The out‐of‐plane stress is not modelled well, apparently because the inelastic normal strain in this direction is overpredicted. In plane strain, localization is predicted to occur close to peak stress, in good agreement with the experiment. Observation of localization on the rising portion of the stress–strain curve in plane strain does not, however, indicate prepeak localization. Because of the rapid increase of mean stress in plane strain, the stress–strain curve can be rising while the shear stress versus shear strain curve at constant mean stress is falling (negative hardening modulus). Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
A constitutive model for granular materials is developed within the framework of strain–hardening elastoplasticity, aiming at describing some of the macroscopic effects of the degradation processes associated with grain crushing. The central assumption of the paper is that, upon loading, the frictional properties of the material are modified as a consequence of the changes in grain size distribution. The effects of these irreversible microscopic processes are described macroscopically as accumulated plastic strain. Plastic strain drives the evolution of internal variables which model phenomenologically the changes of mechanical properties induced by grain crushing by controlling the geometry of the yield locus and the direction of plastic flow. An application of the model to Pozzolana Nera is presented. The stress–dilatancy relationship observed for this material is used as a guidance for the formulation of hardening laws. One of the salient features of the proposed model is its capability of reproducing the stress–dilatancy behaviour observed in Pozzolana Nera, for which the minimum value of dilatancy always follows the maximum stress ratio experienced by the material. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
粘土的双硬化模型   总被引:20,自引:4,他引:20  
本文中建议了一个包含塑性体应变和偏应变两个硬化参数的封闭屈服面模型,可以同时应用于正常固结土和超固结土。该模型沿用了剑桥模型的参数测定方法,而大大拓展其适用范围。通过正常固结试样、超固结试样和应力路线转折条件下计算与试验曲线的对比,说明该模型有较广泛的适应性。  相似文献   

18.
A novel conceptual model of the mechanics of sands is developed within an elastic–plastic framework. Central to this model is the realization that volume changes in anisotropic granular materials occur as a result of two fundamentally different mechanisms. The first is purely kinematic, dilative, and is the result of the changes in anisotropic fabric. There is also a second volume change in granular media that occurs as a direct response to changes in stress as in a standard elastic/plastic continuum. The inclusion of the two sources of volume change results in three important datum states. When subjected to isotropic strains, the resulting stress state in granular materials is not isotropic but lies upon the kinematic normal consolidation line. There exists a state at which the fabric‐induced volumetric strain rate becomes equal to the stress‐induced volumetric strain rate making the total plastic volumetric strain rate equal to zero. Granular response changes from contractive to dilative at this phase transformation line. The third datum state is the one in which the stress‐induced volumetric strain rate is zero. The sand, however, continues to dilate at this state with the difference between stress and dilation ratio a constant as predicted by Taylor's stress–dilatancy rule. These predictions are shown in accordance with experimental data from a series of drained tests and undrained on Ottawa sand. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The yield vertex non-coaxial model is different from classical elastoplastic models, in that there is an additional plastic strain rate tangential to yield surfaces, as well as the plastic strain rate normal to yield surfaces, when orientations of principal stress change. This feature raises concerns on its finite element implementations. In nonlinear finite element numerical iterations, a large tangential plastic strain rate is likely to make the trial total strain rate direct inside a yield surface, which entails convergence difficulty. Some modifications are introduced on the non-coaxial model itself to make numerical convergence easier in the work published in Yang and Yu (2010) [20]. This paper is an extension of the previous work. Instead of modifying the non-coaxial model itself, this paper concerns the use of finite element explicit procedure, which is suitable for highly discontinuous problems. The simulations of shallow foundation load-settlement responses indicate that the finite element explicit procedure, assisted with a robust and explicit automatic substepping integration scheme of the non-coaxial model, does not encounter numerical difficulty. In addition, the overall trends of implicit and explicit simulations are similar.  相似文献   

20.
韩超  庞德朋  李德建 《岩土力学》2020,41(4):1179-1188
对陕西柠条塔砂岩样品进行单轴分级加卸载蠕变试验,分析样品变形破坏过程中的能量演化规律。结果表明:随循环级数增加,各级耗散能非线性增长,各级塑性应变能相对稳定;耗散能超过塑性应变能可作为样品破坏的先兆能量特征。通过定义相关系数,建立能量与变形之间的关系后发现:随循环级数增加,各级塑性应变能与各级新增塑性应变呈正相关性,各级耗散能与塑性应变累积量呈正相关性。分别对加载、蠕变、卸载及恢复等4个阶段的能量计算后得出:各阶段能量演化速率均随循环级数的增加而增大。加、卸载速率恒定时,加载段能量变化率大于同级卸载段能量变化率,蠕变段能量变化率大于同级恢复段能量变化率。通过分析各级循环加载段能量变化规律,提出能量衰减系数 ,该值随应力水平增长呈幂函数形式降低,以此提出一种可以有效预测破坏应力的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号