首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper describes a technique for computing rigorous upper bounds on limit loads under conditions of plane strain. The method assumes a perfectly plastic soil model, which is either purely cohesive or cohesive-frictional, and employs finite elements in conjunction with the upper bound theorem of classical plasticity theory. The computational procedure uses three-noded triangular elements with the unknown velocities as the nodal variables. An additional set of unknowns, the plastic multiplier rates, is associated with each element. Kinematically admissible velocity discontinuities are permitted along specified planes within the grid. The finite element formulation of the upper bound theorem leads to a classical linear programming problem where the objective function, which is to be minimized, corresponds to the dissipated power and is expressed in terms of the velocities and plastic multiplier rates. The unknowns are subject to a set of linear constraints arising from the imposition of the flow rulé and velocity boundary conditions. It is shown that the upper bound optimization problem may be solved efficiently by applying an active set algorithm to the dual linear programming problem. Since the computed velocity field satisfies all the conditions of the upper bound theorem, the corresponding limit load is a strict upper bound on the true limit load. Other advantages include the ability to deal with complicated loading, complex geometry and a variety of boundary conditions. Several examples are given to illustrate the effectiveness of the procedure.  相似文献   

2.
The ultimate bearing capacity problem of column‐reinforced foundations under inclined loading is investigated within the framework of static and kinematic approaches of yield design theory. The configuration of a native soft clayey soil reinforced by either a group of purely cohesive columns (lime‐column technique) or a group of purely frictional columns (stone‐column technique) is analyzed under plane strain conditions. First, lower bound estimates are derived for the ultimate bearing capacity by considering statically admissible piecewise linear stress distributions that comply with the local strength conditions of the constitutive materials. The problem is then handled by means of the yield design kinematic approach of limit analysis through the implementation of several failure mechanisms, allowing the formulation of upper bound estimates for the ultimate bearing capacity. A series of finite element limit load solutions obtained from numerical elastoplastic simulations suggests that the predictions derived from the kinematic approach appear to be more accurate than the estimates obtained from the static approach. Comparison with available results obtained in the context of yield design homogenization demonstrates the accuracy of the proposed direct analysis, which may therefore be viewed as complementary approach to homogenization‐based approaches when a small number of columns is involved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
赵明华  张锐  刘猛 《岩土力学》2015,36(12):3589-3597
下限分析有限单元法将下限定理这一数学变分问题转化为一个数学规划问题,克服了人为构造可静应力场的困难,在实际工程中具有广阔的应用前景。通过有限元离散得到的非线性下限规划模型中包含大量的优化变量与约束条件,常规优化算法难以求解。为此,在分析非线性下限规划模型自身特点的基础上,引入可行弧技术和Wolfe非精确搜索技术改进其优化求解效率。算例分析表明,基于可行弧技术和Wolfe非精确搜索技术,下限分析有限单元法优化求解程序的收敛速度和步长搜索效率得到明显的提升,并且其数值稳定性良好、计算精度较高,可以较好地适应实际工程问题的计算。  相似文献   

4.
基于非线性规划的有限元塑性极限分析下限法研究   总被引:1,自引:0,他引:1  
王均星  李泽 《岩土力学》2008,29(6):1471-1476
在分析Sloan建立的有限元塑性极限分析线性规划数学模型存在的局限性基础上,提出了基于非线性规划的有限元塑性极限分析下限法数学模型。采用非线性屈服条件构建了下限法静力容许应力场,建立了求解超载系数、强度储备系数的下限法数学模型,并提出了针对塑性极限分析非线性规划数学模型的求解策略;最后对一个经典算例进行了深入分析,验证了方法的正确性。  相似文献   

5.
考虑孔隙水压力的土坡稳定性的有限元下限分析   总被引:4,自引:4,他引:0  
王均星  李泽  陈炜 《岩土力学》2005,26(8):1258-1262
以极限分析下限法理论为基础,应用有限单元思想离散结构物,建立了同时满足平衡条件、应力边界条件、屈服条件和应力间断条件的静力许可应力场,其中孔隙水压力被当作一种类似于重力的外力荷载。引入线性数学规划手段后,得到了考虑孔隙水压力的边坡稳定的下限法数学规划模型,由此可以求出安全系数的下限解及其对应的应力场。最后,以2个经典的土坡为算例,与多种方法的分析结果比较,论证了该方法的正确性。  相似文献   

6.
In this paper, a nonlinear numerical technique is developed to calculate the limit load and failure mode of structures obeying an ellipsoid yield criterion by means of the kinematic limit theorem, nonlinear programming theory and displacement-based finite element method. Using an associated flow rule, a general yield criterion expressed by an ellipsoid equation can be directly introduced into the kinematic theorem of limit analysis. The yield surface is not linearized and instead a nonlinear purely kinematic formulation is obtained. The nonlinear formulation has a smaller number of constraints and requires less computational effort than a linear formulation. By applying the finite element method, the kinematic limit analysis with an ellipsoid yield criterion is formulated as a nonlinear mathematical programming problem subject to only a small number of equality constraints. The objective function corresponds to the dissipation power which is to be minimized and an upper bound to the plastic limit load of a structure can then be calculated by solving the minimum optimization problem. An effective, direct iterative algorithm has been developed to solve the resulting nonlinear programming formulation. The calculation is based purely on kinematically admissible velocities. The stress field does not need to be calculated and the failure mode of structures can be obtained. The proposed method can be used to calculate the bearing capacity of clay soils in a direct way. Some examples are given to illustrate the validity and effectiveness of the proposed method.  相似文献   

7.
李泽  刘毅  周宇  王均星 《岩土力学》2018,39(3):1100-1108
将极限分析下限法理论、混合数值离散思想和线性规划结合起来研究砌石挡土墙边坡的极限承载力。采用三角形有限单元离散土体来模拟土体的连续介质力学特性,构建土体静力许可应力场的约束条件,采用块体单元离散砌石体来模拟砌石体的非连续介质力学特性,构建砌石挡土墙的静力许可应力场的约束条件;同时建立有限元单元和块体单元交界面的约束条件;然后以超载系数为目标函数建立求解砌石挡土墙极限承载力的下限法线性规划模型,并使用内点算法进行最优化求解,获得边坡的极限荷载(或安全系数)和对应的应力场。通过3个算例的分析验证了所提方法的正确性。所提方法是将混合数值离散思想引入极限分析领域的一次尝试。  相似文献   

8.
In this paper, the formulation of the lower bound limit analysis of an anisotropic undrained strength criterion using second‐order cone programming is described. The finite element concept was used to discretize the soil mass into 3‐noded triangular elements. The stress field was modeled using a linear interpolation within the elements while stress discontinuities were permitted to occur at the shared edges of adjacent elements. An elliptical yield criterion was adopted to model the anisotropic undrained strength of the clay. A statically admissible stress field was defined by enforcing the equilibrium equations within all triangular elements and along all shared edges of adjacent elements, stress boundary conditions, and no stress violation of the anisotropic strength envelope cast in the form of a conic quadratic constraint. The lower bound solution of the proposed formulation was solved by second‐order cone programming. The proposed formulation of the anisotropic undrained strength criterion was validated through comparison of the model's predictions with the known exact solutions of strip footings, and was applied to solve undrained stability of a shallow unlined square tunnel. Computational performance between the proposed approach of second‐order cone programming and linear programming was examined and discussed.  相似文献   

9.
三维块体元塑性极限分析下限法   总被引:1,自引:0,他引:1  
陈炜  李泽  王均星  罗贝尔 《岩土力学》2010,31(11):3645-3650
基于块体元离散思想,将三维边坡离散为块体-结构面组成的块体系统,假定块体为刚体,以结构面上的应力为未知量;从下限定理出发,构造满足平衡条件、边界条件和屈服条件的静力许可场,平衡方程严格满足3方向力平衡及绕3个主轴方向的力矩平衡条件,为避免非线性规划,对屈服条件进行线性化处理;最后,建立了下限法数学规划模型,通过线性及非线性规划获得边坡稳定严格的下限解。用几个典型算例验证了文中方法的正确性及可行性。  相似文献   

10.
Vertical soil arching, commonly known as the “trapdoor mechanism,” is a pervasive phenomenon in various geotechnical applications that can be evaluated through a variety of analytical and numerical approaches, most of which exist due to a variety of proposed arching mechanisms, many of which are focused on either purely frictional or cohesive soils. This study investigates the realized arching mechanisms and associated loads for trapdoors under both active and passive arching conditions in c′ soils through a series of dimensionless charts using both upper and lower bound limit analyses. An associated sensitivity analysis demonstrates that arching loads are highly dependent on collapse mechanism, a function of not only geometry, but soil shear strength, with cohesion affecting the realized mechanism and arching loads.  相似文献   

11.
Lower bound solutions for circular tunnels in two and three dimensions   总被引:2,自引:0,他引:2  
Summary Complete statically admissible stress fields are evaluated for the problem of tunnel stability. The tunnels are supported by uniform internal pressure due to a lining or rock bolts. In both cases plane deformations are assumed. Additionally, a complete stress field is derived for the problem of the stability of the unsupported span of a tunnel. The latter problem is formulated three dimensionally. In all cases the Mohr Coulomb yield criterion is used. The solution is based on the lower bound theorem of plasticity, which states that the stability of a statical system is proved if at least one admissible stress field exists.  相似文献   

12.
A new method for computing rigorous upper bounds on the limit loads for one‐, two‐ and three‐dimensional continua is described. The formulation is based on linear finite elements, permits kinematically admissible velocity discontinuities at all interelement boundaries, and furnishes a kinematically admissible velocity field by solving a non‐linear programming problem. In the latter, the objective function corresponds to the dissipated power (which is minimized) and the unknowns are subject to linear equality constraints as well as linear and non‐linear inequality constraints. Provided the yield surface is convex, the optimization problem generated by the upper bound method is also convex and can be solved efficiently by applying a two‐stage, quasi‐Newton scheme to the corresponding Kuhn–Tucker optimality conditions. A key advantage of this strategy is that its iteration count is largely independent of the mesh size. Since the formulation permits non‐linear constraints on the unknowns, no linearization of the yield surface is necessary and the modelling of three‐dimensional geometries presents no special difficulties. The utility of the proposed upper bound method is illustrated by applying it to a number of two‐ and three‐dimensional boundary value problems. For a variety of two‐dimensional cases, the new scheme is up to two orders of magnitude faster than an equivalent linear programming scheme which uses yield surface linearization. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
土石坝的坝坡稳定是影响土石坝安全的重要因素,传统的土石坝坝坡稳定采用的是瑞典圆弧法或者毕肖普法,其计算结果既不是下限解也不是上限解。在Sloan的工作基础上,基于有效应力的方式, 用有限单元思想离散结构物,建立满足平衡条件、间断条件、应力边界条件以及屈服条件的极限分析下限法的非线性规划模型,并且编制了相应的程序,应用到土石坝坝坡稳定性的计算中。考虑了地震荷载和渗流作用,采用迭代算法对土石坝进行非线性强度指标的坝坡稳定计算。最后,以几个典型土坡和具体的土石坝工程为算例,与多种方法的分析结果比较,表明了该方法的可行性。  相似文献   

14.
Face stability analysis of tunnels excavated under pressurized shields is a major issue in real tunnelling projects. Most of the failure mechanisms used for the stability analysis of tunnels in purely cohesive soils were derived from rigid block failure mechanisms that were developed for frictional soils, by imposing a null friction angle. For a purely cohesive soil, this kind of mechanism is quite far from the actual velocity field. This paper aims at proposing two new continuous velocity fields for both collapse and blowout of an air‐pressurized tunnel face. These velocity fields are much more consistent with the actual failures observed in undrained clays. They are based on the normality condition, which states that any plastic deformation in a purely cohesive soil develops without any volume change. The numerical results have shown that the proposed velocity fields significantly improve the best existing bounds for collapse pressures and that their results compare reasonably well with the collapse and blowout pressures provided by a commercial finite difference software, for a much smaller computational cost. A design chart is provided for practical use in geotechnical engineering. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A mesh-free based limit analysis approach is proposed, to determine the upper bound solutions for the collapse loads associated with cohesive soils, under plane strain conditions. In the presented technique, the geometry of problem is just simulated by nodes and there is no need of mesh in the traditional sense. The process of finding an upper bound solution consists of combining limit analysis theory and a mesh-free numerical technique as a discretisation tool. To satisfy the required conditions for the admissibility of the discretised velocity field at the entire problem domain, a strain rate smoothing technique has been adopted. The outcome of proposed combination is a nonlinear optimisation problem which is solved by a direct iterative technique. The solution found by an iterative algorithm is an upper bound for limit load of the stability problem. The efficiency of the proposed method is demonstrated by solving different example problems in the soil mechanics engineering field, at the end of the paper.  相似文献   

16.
Nguyen  H. C.  Vo-Minh  T. 《Acta Geotechnica》2022,17(8):3567-3590

This paper adopts an upper bound procedure using the cell-based smoothed finite element method (CS-FEM) to estimate the seismic bearing capacity of shallow strip footings, focussing on seismic soil-structure interactions. In simulations, soil behaviour is assumed as the Mohr–Coulomb material, and increment of plasticity deformation obeys the associated flow rule. The first step of the numerical procedure involves approximating the kinematically admissible displacement fields using the cell-based smoothed finite element method, while the second relates to the establishments of the optimization problem as the conic programming. The inclusion of seismic conditions in the simulations was made using the pseudo-static approach. Initially, three seismic bearing capacity factors were resolved for both smooth and rough foundations by including horizontal and vertical inertia forces caused by the soil weight, the superstructure and the surcharge in the analyses. All seismic bearing capacity components obtained are in excellent agreement with those obtained using the method of characteristics and other finite element analyses. Subsequently, the reduction coefficients that correlate static and seismic bearing capacity factors were computed to facilitate the seismic design of the foundation.

  相似文献   

17.
This paper is devoted to the stability analysis of a vertical embankment in reinforced soil, assuming that a very large number of reinforcements are periodically distributed throughout the soil mass. The reinforced soil is modelled as a homogeneous medium that obeys a macroscopic yield condition. Two numerical formulations of the homogenized problem, derived from the lower and upper bound theorems of limit analysis, respectively, with a finite element discretization technique, are described. They both lead to a linear programming problem, which is carried out by means of XPRESS industrial LP code. The practical implementation of both the static and kinematic finite element programs on the case of a vertical reinforced earth wall results in close estimates of its failure height, which are in good agreement with available experimental data. This points to the ability of such programs to provide a rigorous evaluation of the limit loads of structures through the determination of lower bound and upper bound estimates sufficiently close to each other.  相似文献   

18.
In geomechanics, limit analysis provides a useful method for assessing the capacity of structures such as footings and retaining walls, and the stability of slopes and excavations. This paper presents a finite element implementation of the kinematic (or upper bound) theorem that is novel in two main respects. First, it is shown that conventional linear strain elements (6‐node triangle, 10‐node tetrahedron) are suitable for obtaining strict upper bounds even in the case of cohesive‐frictional materials, provided that the element sides are straight (or the faces planar) such that the strain field varies as a simplex. This is important because until now, the only way to obtain rigorous upper bounds has been to use constant strain elements combined with a discontinuous displacement field. It is well known (and confirmed here) that the accuracy of the latter approach is highly dependent on the alignment of the discontinuities, such that it can perform poorly if an unstructured mesh is employed. Second, the optimization of the displacement field is formulated as a standard second‐order cone programming (SOCP) problem. Using a state‐of‐the‐art SOCP code developed by researchers in mathematical programming, very large example problems are solved with outstanding speed. The examples concern plane strain and the Mohr–Coulomb criterion, but the same approach can be used in 3D with the Drucker–Prager criterion, and can readily be extended to other yield criteria having a similar conic quadratic form. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
极限分析方法是土边坡稳定性分析的重要方法之一。刚体有限元上限法是其中的一类,此类方法仍旧存在一些关键问题需要完善。由于单元的刚性假设,系统的塑性变形内能耗散仅发生在单元间的界面上,故此类方法的性能主要取决于界面的布局,即采用非结构化三角形单元计算往往精度较差。为此,提出了基于滑动面摄动的刚体有限元上限法及临界滑动面的搜索方法。首先,在考虑刚体转动的基础上构造刚体有限元上限法的二阶锥规划模型,用于确定在给定试滑动面条件下的运动许可速度场。其次,将试滑动面的控制参数视为决策变量,建立搜索临界滑动面的非线性非凸优化问题模型,并采用非线性单纯形方法和粒子群方法求解此优化问题找出临界滑动面。通过经典边坡稳定问题的分析求解,验证了所提出的新方法,进一步证实了网格类型(即界面的布局)是影响刚体有限元上限法计算精度的主要因素。经过计算结果的对比发现,在刚体有限元上限法中考虑刚体转动是非常必要的,不仅可以提高刚体有限元上限法的计算精度,还可以克服此方法对界面布局的依赖性。  相似文献   

20.
Upper bound analysis of tunnel face stability in layered soils   总被引:3,自引:3,他引:0  
The working face of tunnel constructions has to be kept stable during tunneling to prevent large soil deformations or fatal failure. In layered soils with lower cohesion, failures happen more often and more abrupt than in cohesive soils. Therefore, the maintenance of a proper support pressure at the tunnel working face is of high importance. In this paper, an upper bound analysis is introduced to investigate the minimum support pressure for the face stability in layered soils. A three-dimensional kinematically admissible mechanism for the upper bound analysis is improved to model potential failure within different soil layers. An analytical solution for the support pressure assessment is achieved. The influence of the crossing and cover soil on the face stability is analyzed, respectively. This solution provides an analytical estimation of the minimum support pressure for the face stability. It may be used as a reference for projects under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号