共查询到6条相似文献,搜索用时 0 毫秒
1.
Rainfall and runoff were monitored simultaneously for one year from a residential road, a car park, nine sections of road draining to individual gullies, two house roofs, two garage roofs, and three types of factory roof. The sites, which included an automatic weather station, were in Redbourn, Hertfordshire on Flood Studies Report Soil Type 1. The 2906 quality controlled ‘station-storms’ represented 193 rain storms and involved 57.2 per cent of the annual rainfall. 1732 storms were of less than 1.4mm of rain, whilst 77 had over 10mm. The percentage runoff averaged 11.4 per cent for roads and 56.9 per cent for roofs (28.3 per cent and 90.4 per cent respectively for rainfalls >5mm). Percentage runoff from the roads was cyclic with a peak during the summer months but there was a marked variation in monthly percentage runoff within and between sites. Regression analysis to explain percentage runoff was undertaken with various subsets of data for: each site; roads; and roofs. The regression analysis considered all storms; >1 percent runoff events; >5mm rainfalls; and events with > = 4 mm rain and > = 5 per cent runoff. The variable values in percentage runoff could not be explained satisfactorily with statistical methods. Only eight of the 72 equations explained more than 57 per cent of the variance. The most important explanatory variables for roads were short term rainfall intensity and rainfall amount, the former was the most important for roofs. ‘Seasonal’ variables had a positive relation ship for roads which shows that the percentage runoff from roads is higher in summer than winter. The antecedent variables showed that percentage runoff from roads and roofs is increased by antecedent rainfall. Seasonal factors and evaporation were unimportant for the percentage runoff from roofs. Depression storage, assessed by examining rainfalls that did and did not produce runoff, showed a diversity of monthly values. The depression storages derived by the regression intercept method were usually smaller. There were no relationships between depression storage and catchment or roof slope. The mean values for roofs and roads respectively were 0.52 mm and 1.23 mm for the classification method and 0.42 mm and 0.6mm with the regression approach. Peak runoff from the roads showed an attenuation to 12.8 per cent for 1 minute rainfall intensities and 24.2 per cent for 5 minute intensities. For roofs the attenuation averaged 36.8 per cent for 1 minute intensities and 92.6 for 5 minute intensities. Regression for peak runoff coefficients from roofs and roads explained negligible amounts of the variance except when events with 1 minute rainfall intensities of over 30 mm hr?1 over the roads were analysed. Total rainfall was an important explanatory variable as was the slope of the road. There was evidence that peak coefficients for roads are greater during the summer. 相似文献
2.
Lack of accurate data has led some hydrologists and city planners to assume that urban infiltration is zero and runoff is 100% of the rainfall. These assumptions lead to an over estimation of road runoff volume and an underestimation of direct recharge to groundwater, which is already rising under some UK cities. This study investigates infiltration and runoff processes and quantifies the percentage of rainfall that contributes to storm drainage, and that which infiltrates through different types of road surface. Access tubes were installed for measuring soil water content using a neutron probe in three car parks, a road and a grass site at the Centre for Ecology and Hydrology, Crowmarsh Gifford, Wallingford. Storm drainage was recorded at the exit of the Thamesmead Estate in Crowmarsh Gifford, just before the drain joins the River Thames at Wallingford. Rainfall and water table depth were also recorded. Weekly measurements of soil moisture content indicated that the top 40 cm layer is not influenced by water‐table fluctuations and, therefore, positive changes in soil moisture could be attributed to infiltration of rainfall through the surface. Depending on the nature of the surface, subsurface layers, level of traffic, etc., between 6 and 9% of rainfall was found to infiltrate through the road surfaces studied. The storm drainage generated by road runoff revealed a flow pattern similar to that of the receiving watercourse (River Thames) and increased with the increase of infiltration and soil water content below the road surface. The ratio of runoff to rainfall was 0·7, 0·9 and 0·5 for annual, winter (October–March) and summer (April–September) respectively. As the results of the infiltration indicated that 6 to 9% of annual rainfall infiltrates through the road surface, this means that evaporation represents, 21–24% of annual rainfall, with more evaporation taking place during summer than winter. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
3.
Applying multi‐parameter runoff elasticity to assess water availability in a changing climate: an example from Texas,USA 下载免费PDF全文
T. H. Brikowski 《水文研究》2015,29(7):1746-1756
Adaptation and mitigation efforts related to global trends in climate and water scarcity must often be implemented at the local, single‐catchment scale. A key requirement is understanding the impact of local climate and watershed characteristics coupled with these regional trends. For surface water, determination of multi‐parameter runoff elasticities is a promising tool for achieving such understanding, as explored here for two surface‐water dependent basins in Texas. The first basin is the water supply for Dallas‐Ft. Worth (DFW), and exhibits relatively high precipitation elasticity (proportional change in runoff to change in precipitation) εP = 2.64, and temperature elasticity εT = ? 0.41. Standard precipitation–temperature elasticity diagrams exhibit unusual concave contours of runoff change, indicating influence of additional parameters, which can be isolated using multi‐parameter approaches. The most influential local parameter in DFW is unexpected reduced runoff fraction in cooler wetter years. Those years exhibit increased summer (JJA) precipitation fraction, but predominant cracking soils in DFW minimize JJA runoff, yielding negative . A comparative basin near Houston shows positive , reflecting the local impact of tropical cyclones and lesser abundance of cracking soils. Both basins exhibit positive elasticity to 1‐year previous precipitation (e.g. DFW εP ? 1 = 1.24), reflecting the influence of soil moisture storage. Only DFW exhibits negative elasticity to 2‐year previous precipitation (εP ? 2 = ? 0.65), reflecting multi‐year influence of vegetation growth and increased evapotranspiration. Using these elasticities, analysis of historical multi‐decadal climate departures for DFW indicates the 80% decrease in runoff during the 1950–1957 drought of record was primarily caused by reduced precipitation. Runoff 56% above‐normal during an unprecedented 1986–1998 wet period was primarily caused by increased precipitation. Since 2000, despite precipitation slightly above normal, runoff has decreased 20%, primarily in response to ~ 1°C warming. Future precipitation droughts superimposed on this new drier normal are likely to be much more severe than historical experience would indicate. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
5.
Seasonal snowpack dynamics are described through field measurements under contrasting canopy conditions for a mountainous catchment in the Japan Sea region. Microclimatic data, snow accumulation, albedo and lysimeter runoff are given through the complete winter season 2002–03 in (1) a mature cedar stand, (2) a larch stand, and (3) a regenerating cedar stand or opening. The accumulation and melt of seasonal snowpack strongly influences streamflow runoff during December to May, including winter baseflow, mid‐winter melt, rain on snow, and diurnal peaks driven by radiation melt in spring. Lysimeter runoff at all sites is characterized by constant ground melt of 0·8–1·0 mm day−1. Rapid response to mid‐winter melt or rainfall shows that the snowpack remains in a ripe or near‐ripe condition throughout the snow‐cover season. Hourly and daily lysimeter discharge was greatest during rain on snow (e.g. 7 mm h−1 and 53 mm day−1 on 17 December) with the majority of runoff due to rainfall passing through the snowpack as opposed to snowmelt. For both rain‐on‐snow and radiation melt events lysimeter discharge was generally greatest at the open site, although there were exceptions such as during interception melt events. During radiation melt instantaneous discharge was up to 4·0 times greater in the opening compared with the mature cedar, and 48 h discharge was up to 2·5 times greater. Perhaps characteristic of maritime climates, forest interception melt is shown to be important in addition to sublimation in reducing snow accumulation beneath dense canopies. While sublimation represents a loss from the catchment water balance, interception melt percolates through the snowpack and contributes to soil moisture during the winter season. Strong differences in microclimate and snowpack albedo persisted between cedar, larch and open sites, and it is suggested further work is needed to account for this in hydrological simulation models. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
6.
An experimental study of water fluxes from roofs in a residential area has quantified water fluxes from different types of roof and identified the major controls on the process. Roofs with pitches of 0°, 22° and 50° and orientations of 15° (from true north) (NNE) and 103° (ESE) were selected. A novel automatic system for monitoring has been developed. Noticeable differences in rainfall, runoff and evaporation were found for different roof slopes, aspects and heights. Depending on height, flat roofs collected 90 to 99% of rainfall recorded at ground level. Roofs with a 22° slope; facing south‐south‐west (i.e. facing the prevailing wind) captured most rain, whereas east‐south‐east facing roofs with slopes of 50° received the least. Depending on the roof slope, the average rainfall captured ranged from 62 to 93% of that at ground level. For the same slope, the results indicated that from roofs orientated normal to the prevailing wind; (i) captured rainfall was higher, (ii) evaporation was higher and (iii) runoff was less than that from roofs having other aspects. Monthly variations in the runoff–rainfall ratio followed the rainfall distribution, being lowest in summer and highest in winter. The highest mean ratio (0·91) was associated with the steeper roof slope; the lowest ratio (0·61) was for roofs facing the prevailing wind direction. For the same amount of rainfall, the runoff generated from a steeper roof was significantly higher than that generated by a moderate roof slope, but the lowest runoff was from roofs facing the prevailing wind. The results have also shown that the amount of runoff collected (under UK climatic condition) was sufficient to supply an average household in the studied area with the major part of its annual water requirements. The use of this water not only represents a financial gain for house owners but also will help protect the environment by reducing demand on water resources through the reduction of groundwater abstraction, construction of new reservoirs, and a reduction of the flood risk as its in situ use is considered a preventive measure known as a source control. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献