首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The boundary element method has been successfully applied in the past to the analysis of hydrodynamic forces in two-dimensional infinite as well as two- and three-dimensional finite reservoirs subjected to seismic ground motions. This paper presents the results of more recent research on the application of the constant boundary element method to the 3D analysis of reservoir vibration. Special boundary conditions, previously used in the 2D case, to treat infinite radiation damping and damping from foundation soil and banks have been incorporated in this formulation. Numerical results for vibration of a 3D infinite rectangular reservoir as well as of a 3D infinite reservoir impounded by an arch dam are presented and compared with some existing results obtained by other researchers.  相似文献   

2.
Based on a non-linear dam-reservoir interaction model, a study investigating the earthquake response of concrete gravity dams is presented. For the propagation of cracks in unreinforced mass concrete, a discrete crack approach formulation based on the finite element method is applied. A special crack element is used to follow a fictitious crack in order to account for a zone of microcracks developing at the crack tip. The reservoir is modelled using the boundary element method. At a fictitious boundary dividing the irregular finite part of the reservoir from the regular infinite part, the loss of energy due to pressure waves moving away towards infinity is taken into account rigorously. Analyses are performed on the tallest non-overflow monolith of the Pine Flat Dam located in Kern County, California. The interaction of a dam, which may exhibit cracks in mass concrete, with a reservoir domain of arbitrary geometry extending to infinity is studied. Some main parameters are investigated. The importance of tools capable of handling the non-linear dam-reservoir interaction is emphasized.  相似文献   

3.
就大型近场波动的高效数值模拟而言,稳定实现高阶人工边界是一个尚未圆满解决的问题.本文针对使用多次透射公式的SH波动集中质量有限元模拟,依据GKS定理的群速度解释,进一步阐明了人工边界与内域离散格式耦合所导致高频失稳的机理,即两者支持群速度指向内域的外行高频平面谐波,波动能量自发地从人工边界进入內域,从而导致失稳,而这类谐波是由集中质量有限元离散引入的.本文提出了消除此种耦合失稳的一种方法:通过修改有限元刚度阵来改变内域离散格式,并保证修改格式的精度不低于原有格式的精度.理论分析和数值实验表明此法能稳定实现透射边界.本文研究结果具有推广应用前景.  相似文献   

4.
The design of seismic resistant concrete gravity dam necessitates accurate determination of hydrodynamic pressure developed in the adjacent reservoir. The hydrodynamic pressure developed on structure is dependent on the physical characteristics of the boundaries surrounding the reservoir including reservoir bottom. The sedimentary material in the reservoir bottom absorbs energy at the bottom, which will affect the hydrodynamic pressure at the upstream face of the dam. The fundamental parameter characterizing the effect of absorption of hydrodynamic pressure waves at the reservoir bottom due to sediment is the reflection coefficient. The wave reflection coefficient is determined from parameters based on sediment layer thickness, its material properties and excitation frequencies. An analytical or a closed-form solution cannot account for the arbitrary geometry of the dam or reservoir bed profile. This problem can be efficiently tackled with finite element technique. The need for an accurate truncation boundary is felt to reduce the computational domain of the unbounded reservoir system. An efficient truncation boundary condition (TBC) which accounts for the reservoir bottom effect is proposed for the finite element analysis of infinite reservoir. The results show the efficiency of the proposed truncation boundary condition.  相似文献   

5.
6.
电导率各向异性的海洋电磁三维有限单元法正演   总被引:10,自引:8,他引:2       下载免费PDF全文
本文提出了一种基于非结构化网格的海洋电磁有限单元正演算法.为了回避场源奇异性,文中选用二次场算法,将背景电阻率设置为水平层状且各向异性,场源在水平层状各向异性介质中所激发的一次场通过汉克尔积分得到.基于Coulomb规范得到二次矢量位和标量位所满足的Maxwell方程组,通过Galerkin加权余量法形成大型稀疏有限元方程,采用不完全LU分解(ILU)预条件因子的quasi-minimum residual(QMR)迭代解法对有限元方程进行求解得到二次矢量位和标量位;进而,利用滑动平均方法得到二次矢量位和标量位在空间的导数,由此得到二次电磁场;通过一维模型对算法的可靠性进行验证,与此同时,针对实际复杂海洋电磁模型,比较有限元模拟结果与积分方程模拟结果,进一步验证算法精度.若干计算结果均表明,文中算法具有良好的通用性,适用于井中电磁、航空电磁,环境地球物理等非均匀且各向异性介质中的电磁感应基础研究.  相似文献   

7.
Conventional seismic analysis of gravity dams assumes that the behaviour of the dam–water–soil system can be represented using a 2‐D model since dam vertical contraction joints between blocks allow them to vibrate independently from each other. The 2‐D model assumes the reservoir to be infinite and of constant width, which is not true for certain types of reservoirs. In this paper, a boundary element method (BEM) model in the frequency domain is used to investigate the influence of the reservoir geometry on the hydrodynamic dam response. Important conceptual conclusions about the dam–reservoir system behaviour are obtained using this model. The results show that the reservoir shape influences the seismic response of the dam, making it necessary to account for 3‐D effects in order to obtain accurate results. In particular, the 3‐D pressure and displacement responses can be substantially larger than those computed with the 2‐D model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
本用震源力学理论和方法研究了徐淮地区从1970年以来构造应力场的方向和强度的时空变化过程。结果表明:以唐山地震为分界线,本区的应力场P轴取向由震前平均61.8°变为震后平均77.7°。如果将本区以宿北断裂为界分为南区和北区两个部分,则北区的P轴取向从68.1°变71.2°,而南区的P轴取向由62.5°变到83.6°,南区的变化明显于北区。  相似文献   

9.
Starting from an analytical reservoir model that incorporates full interaction with an elastic overburden, a new hybrid mathematical approach is developed by combining two numerical discretization methods. A tabular reservoir (petroleum reservoir or an aquifer) in an infinite or semi-infinite domain is viewed as a macroscopic displacement discontinuity, allowing use of the efficient displacement discontinuity mathematical method to calculate stresses and displacements that arise because of pressure changes. A 3-D finite element method using a poroelastic formulation is used to discretize the reservoir itself. By coupling the displacement discontinuity and finite element methods, a 3-D large-scale poroelastic reservoir can be simulated within an infinite or semi-infinite domain. The numerical model has been verified through comparison to known solutions, and some time-dependent pressure drawdown problems are analyzed. Results indicate that including the complete overburden (reservoir surroundings) response has a significant effect on pressure drawdown in a poroelastic reservoir during pumping, and should be incorporated in appropriate applications such as well test equations and subsidence analyses.  相似文献   

10.
The transient analysis of dam–reservoir systems by employing perfectly matched layers has been investigated. In previous studies, boundary conditions of the PML region in the reservoir have been neglected. In this paper, they are incorporated completely in the formulation. Moreover, a technique is introduced to involve the effect of incident waves caused by vertical ground motions at the reservoir bottom in the analysis. Performing several numerical experiments indicates that applying boundary conditions of the PML domain and utilizing the proposed method for vertical excitation cases reduce the computational cost significantly and make the PML method a very efficient approach for the transient analysis of dam–reservoir systems.  相似文献   

11.
A study on the seismic response of massive flexible strip-foundations embedded in layered soils and subjected to seismic excitation is presented. Emphasis is placed on the investigation of the system response with the aid of a boundary element–finite element formulation proper for the treatment of such soil–structure interaction problems. In the formulation, the boundary element method (BEM) is employed to overcome the difficulties that arise from modeling the infinite soil domain, and the finite element method (FEM) is applied to model the embedded massive flexible strip-foundation. The numerical solution for the soil–foundation system is obtained by coupling the FEM with the BEM through compatibility and equilibrium conditions at the soil–foundation and soil layer interfaces. A parametric study is conducted to investigate the effects of foundation stiffness and embedment on the seismic response.  相似文献   

12.
弱形式时域完美匹配层   总被引:6,自引:0,他引:6       下载免费PDF全文
谢志南  章旭斌 《地球物理学报》2017,60(10):3823-3831
应用高精度人工边界条件可有效提升近场波动数值模拟计算效率.完美匹配层是吸收层形式高精度人工边界条件,匹配层内场方程和界面条件通常分别采用复坐标延伸技术变换强形式无限域内波动方程和界面条件得到,亦曾将无限域界面条件当作匹配层界面条件.场方程和界面条件构建过程相互独立,可能出现匹配不合理而引发数值失稳、计算精度低下等问题.本文提出采用复坐标延伸技术变换弱形式无限域波动方程以构建完美匹配层的方法.弱形式波动方程耦合了波动方程及界面条件,进而规避了变换后所得场方程与界面条件之间的匹配不合理问题.新方法可直接建立弱形式匹配层,在此基础上亦可给出强形式匹配层.弱形式便于有限元离散,强形式便于有限差分离散.基于弱形式完美匹配层,结合勒让德谱元建立了弹性介质近场波动谱元模拟方案.利用算例验证了新方案的精度及数值稳定性.本文工作可直接推广至多相耦合介质近场波动数值模拟.  相似文献   

13.
A three-dimensional dam-reservoir system under seismic load is analysed. The dam is assumed to be rigid. The reservoir is an infinite channel with semi-circular cross-section. The exact analytical solution, based on the assumption of potential fluid motion is presented, as well as numerical results for selected parameters.The most significant parameters are: the direction and frequency content of the seismic input; the radiation damping at the reservoir bottom; and the compressibility of the fluid. The response of the system depends strongly on the direction of the input ground motion. This is shown by the transfer functions as well as by the pressure time histories due to two earthquakes with different frequency content. The energy absorption at the reservoir bottom is important. A simple plane-wave model shows, that even for a rock foundation, the amount of transmitted energy can reach up to 80%. For comparison the case without bottom absorption is also shown. Compressbility has to be included to capture the resonance effects. The exact analytical solution is also used to verify numerical results obtained by a new method that combines a finite element model with a rigorous radiation boundary for the infinite channel in the time domain.  相似文献   

14.
The method of finite differences is applied to the computation of multi-dimensional synthetic seismograms. This paper gives a study of the mathematical and numerical formulations of the problem, the boundary conditions, the convergence conditions and how to simulate the source in both one solid or a liquid. It is shown that the numerical formulation chosen is valid both for direct and inverse problems (i.e. for modeling and migration). This formulation makes it possible to use the normal incidence reflection coefficients for P and S waves, whether they travel horizontally or vertically. The examples shown have been chosen on purpose in order to be easily interpreted. They do not give a full idea of the possibilities of the algorithm which allows to consider non-planar interfaces, except close to the vertical axis.  相似文献   

15.
In a finite element formulation for dynamic soil-structure interaction, an absorbing boundary condition is needed to model wave propagation towards infinity. When the soil is saturated, its dynamic behaviour can be modelled by means of Biot's poroelastic theory. In Part I (Degrande, G. & De Roeck, G., Soil Dynamics & Earthquake Eng., 1993, 12(7), 411-21), a local absorbing boundary condition for wave propagation in saturated poroelastic media has been developed. In the present paper, this boundary condition is implemented in an irreducible finite element formulation for a compressible pore fluid. Spurious reflections for oblique incident waves on the absorbing boundary contribute to the solution errors. Therefore, a spectral element method, based on classical analytical solution techniques, is used to assess the accuracy of the finite element formulation.  相似文献   

16.
斜入射条件下地下结构时域地震反应分析初探   总被引:9,自引:1,他引:8  
通过采用平面波和远场散射波混合透射的应力人工边界条件,得到了地震波斜入射的解析方式,以此为基础建立了地震波斜入射条件下,土体与地下结构动力相互作用的时域计算分析模型。以实际建设的南京地铁某车站结构为研究对象,应用大型通用有限元分析软件ANSYS,进行了地震波斜入射条件下地下结构时域地震反应的计算和分析。初步结果表明:在地震波斜入射的情况下,地下结构的动力反应与地震波垂直入射时有较为明显的差异。  相似文献   

17.
Based on Biot's two-phase mixture theory and the paraxial approximation, the absorbing boundary conditions in the time domain for u-w, u-U and u-p formulations are presented for the dynamic analysis of fluid-saturated porous media. These absorbing boundaries are equivalent to the viscous boundaries in the fundamental mode. The expressions for the energy ratio and reflection coefficient between the reflected and incident waves along the absorbing boundary are given. The numerical results show that the proposed absorbing boundaries can greatly suppress the spuriously reflected wave and model the far field of the system. These results also dynamic analysis of infinite fluid-saturated porous media. for the transient dynamic analysis of infinite fluid-saturated porous media.  相似文献   

18.
A simple boundary element formulation which is based directly on the point load solutions for an elastic full-space is presented. It is integrated in a finite element program to calculate dynamic soil-structure interaction problems. The combined boundary and finite element method is applied to structures which are excited by horizontally propagating waves in the soil. For three different types of flexible structure-elastic beams, low and high (square) shear walls-and the corresponding rigid structures the vibration modes and the soil-structure transfer functions have been investigated. The flexible foundations display the same wave pattern as the exciting free-field of the soil, but the amplitudes are reduced with increasing frequency, depending on the stiffness or wave resistance of the structure. Rigid structures show, in part, quite different behaviour, giving free-field reductions caused by kinematic and inertial soil-structure interaction.  相似文献   

19.
Finite element simulation of the time-dependent wave propagation in infinite media requires enforcing the transmitting boundary to replace the truncated far-field infinite domain so as to model the effect of the wave radiation towards infinity. This paper proposed a novel local time-domain transmitting boundary for simulating the cylindrical elastic wave radiation problem. This boundary is a mechanical model consisting of the spring, dashpot and mass elements, with the auxiliary degrees of freedom introduced, which is dynamically stable and easily implemented into the commercial finite element codes. Numerical analysis of the cylindrical elastic wave radiation problem indicates that the proposed transmitting boundaries with the order N=3 for cylindrical P and SV waves and with the order N=4 for cylindrical SH wave have very high accuracy, even when the artificial boundary at wave source. The proposed transmitting boundary with order N=0 can be applied approximately to the general two-dimensional infinite elastic wave problems that contain the more complex outgoing wave fields at artificial boundary than the cylindrical waves. The plane-strain Lamb problem is analyzed with the acceptable engineering accuracy achieved. On the other hand, the proposed transmitting boundary with higher order can be a tool to localize the temporal convolution that appears in an exact time-domain transmitting boundary for the general infinite wave problems. This potential applicability is mentioned.  相似文献   

20.
Steel well casings in or near a hydrocarbon reservoir can be used as source electrodes in time‐lapse monitoring using grounded line electromagnetic methods. A requisite component of carrying out such monitoring is the capability to numerically model the electromagnetic response of a set of source electrodes of finite length. We present a modelling algorithm using the finite‐element method for calculating the electromagnetic response of a three‐dimensional conductivity model excited using a vertical steel‐cased borehole as a source. The method is based on a combination of the method of moments and the Coulomb‐gauged primary–secondary potential formulation. Using the method of moments, we obtain the primary field in a half‐space due to an energized vertical steel casing by dividing the casing into a set of segments, each assumed to carry a piecewise constant alternating current density. The primary field is then substituted into the primary–secondary potential finite‐element formulation of the three‐dimensional problem to obtain the secondary field. To validate the algorithm, we compare our numerical results with: (i) the analytical solution for an infinite length casing in a whole space, excited by a line source, and (ii) a three‐layered Earth model without a casing. The agreement between the numerical and analytical solutions demonstrates the effectiveness of our algorithm. As an illustration, we also present the time‐lapse electromagnetic response of a synthetic model representing a gas reservoir undergoing water flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号