首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated measurement of tephra erosion near Mount St. Helens over a 30-year period at steel stakes, installed on 10 hillslopes in the months following the 1980 eruption, provides a unique long-term record of changing processes, controls and rates of erosion. Intensive monitoring in the first three post-eruption years showed erosion declined rapidly as processes shifted from sheetwash and rilling to rainsplash. To test predictions about changes to long-term rates and processes made based on the 3-year record, we remeasured sites in 1992, 2000 and 2010. Average annual erosion from 1983 to 1992 averaged 3.1 mm year−1 and ranged from 1.4 to 5.9 mm year−1, with the highest rate on moderately steep slopes. Stakes in rills in 1983 generally recorded deposition as the rills became rounded, filled and indistinct by 1992, indicating a continued shift in process dominance to rainsplash, frost action and bioturbation. Recovering plants, where present, also slowed erosion. However, in the second and third decades even unvegetated hillslopes ceased recording net measurable erosion; physical processes had stabilized surfaces from sheetwash and rill erosion in the first few years, and they appear to have later stabilized surfaces against rainsplash erosion in the following few decades. Comparison of erosion rates with suspended sediment flux indicates that within about 6 years post-eruption, suspended sediment yield from tephra-covered slopes was indistinguishable from that in forested basins. Thirty years after its deposition, on moderate and gentle hillslopes, most tephra remained; in well-vegetated areas, plant litter accumulated and soil developed, and where the surface remained barren, bioturbation and rainsplash redistributed and mixed tephra. These findings extend our understanding from shorter-term studies of the evolution of erosion processes on freshly created substrate, confirm earlier predictions about temporal changes to tephra erosion following eruptions, and provide insight into the conditions under which tephra layers are preserved. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

2.
Mount St. Helens has been a prolific source of tephra-fall deposits for about 40 000 years. These tephra deposits (1) record numerous explosive eruptions, (2) form important regional time-stratigraphic marker beds, and (3) record repeated changes in composition within and between eruptive periods.Recognized tephra strata record more than 100 explosive eruptive events at Mount St. Helens; those tephra strata are classified as beds, layers, and sets. Tephra sets, each of which consists of a group of beds and layers, define in part the nine eruptive periods recognized at the volcano. Individual tephra sets are distinguished from stratigraphically adjacent sets by differences in composition or by evidence of clapsed time.Several tephra units from Mount St. Helens form important marker beds at distances of hundreds of kilometers downwind from the volcano. Cummingtonite phenocrysts, which are known in ejecta from only Mount St. Helens in the Pacific Northwest, characterize some marker beds and readily identify their source.The tephra sequence also records eruption of the mafic andesites that mark the appearance of the modern Mount St. Helens and numerous changes in composition among dacite, basalt, and andesite since that time.  相似文献   

3.
The cataclysmic 1980 eruption of Mount St Helens radically reduced the infiltration characteristics of ∼60 000 ha of rugged terrain and dramatically altered landscape hydrology. Two decades of erosional, biogenic, cryogenic, and anthropogenic activity have modified the infiltration characteristics of much of that devastated landscape and modulated the hydrological impact of the eruption. We assessed infiltration and runoff characteristics of a segment of hillslope thickly mantled with tephra, but now revegetated primarily with grasses and other plants, to evaluate hydrological modifications due to erosion and natural turbation. Eruptive disturbance reduced infiltration capacity of the hillslope by as much as 50‐fold. Between 1980 and 2000, apparent infiltration capacities of plots on the hillslope increased as much as ten fold, but remain approximately three to five times less than the probable pre‐eruption capacities. Common regional rainfall intensities and snowmelt rates presently produce little surface runoff; however, high‐magnitude, low‐frequency storms and unusually rapid snowmelt can still induce broad infiltration‐excess overland flow. After 20 years, erosion and natural mechanical turbation have modulated, but not effaced, the hydrological perturbation caused by the cataclysmic eruption. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
Following its plinian eruption on 18 May 1980, Mount St Helens (Washington State, USA) entered a period of intermittent lava-dome extrusion until 1986. Renewed extrusion was frequently preceded by accelerating rates of seismicity, with more precursory seismicity observed prior to eruptions later in the sequence. Here the failure forecasting method (FFM) is used to investigate changes in the observed rate of volcano–tectonic (VT) seismicity. The analysis indicates that: (1) all VT crises resulted in an eruption within 3 weeks (usually less than 10 days), (2) the majority of eruptions had VT precursors, and (3) patterns of precursory seismicity showed fluctuations about the ideal model trend. Thus, although these seismic events could be used to warn of an impending eruption, specific forecasts were subject to an uncertainty of weeks or more. It is proposed that: (1) increased seismicity prior to later eruptions is a result of a larger and more solidified dome acting as a greater impediment to magma ascent; (2) the consistency of seismic swarms resulting in an eruption indicates that stresses high enough to initiate fracturing in the country rock and lava dome carapace were only achieved once the approach to an eruption had already begun; and (3) discrepancies between models of accelerating rock fracture and the observed seismicity may arise due to a significant amount of the rocks deforming through ductile mechanisms rather than seismogenic fracture.  相似文献   

5.
Volcano monitoring and volcanic-hazards studies have received greatly increased attention in the United States in the past few years. Before 1980, the Volcanic Hazards Program was primarily focused on the active volcanoes of Kilauea and Mauna Loa, Hawaii, which have been monitored continuously since 1912 by the Hawaiian Volcano Observatory. After the reawakening and catastrophic eruption of Mount St. Helens in 1980, the program was substantially expanded as the government and general public became aware of the potential for eruptions and associated hazards within the conterminous United States. Integrated components of the expanded program include: volcanic-hazards assessment; volcano monitoring; fundamental research; and, in concert with federal, state, and local authorities, emergency-response planning.In 1980 the David A. Johnston Cascades Volcano Observatory was established in Vancouver, Washington, to systematically monitor the continuing activity of Mount St. Helens, and to acquire baseline data for monitoring the other, presently quiescent, but potentially dangerous Cascade volcanoes in the Pacific Northwest. Since June 1980, all of the eruptions of Mount St. Helens have been predicted successfully on the basis of seismic and geodetic monitoring.The largest volcanic eruptions, but the least probable statistically, that pose a threat to western conterminous United States are those from the large Pleistocene-Holocene volcanic systems, such as Long Valley caldera (California) and Yellowstone caldera (Wyoming), which are underlain by large magma chambers still potentially capable of producing catastrophic caldera-forming eruptions. In order to become better prepared for possible future hazards associated with such historically unpecedented events, detailed studies of these, and similar, large volcanic systems should be intensified to gain better insight into caldera-forming processes and to recognize, if possible, the precursors of caldera-forming eruptions.  相似文献   

6.
El Chichón volcano is an andesite stratovolcano in southern México. It erupted in March 1982, after about 550 years of quiescence. The 1982 eruption of El Chichón has not been followed by the growth of a lava dome within the newly formed crater. This is rather anomalous since the construction of a new dome after the destruction of an old one is a common process during the eruptions at andesite and dacite volcanoes. To discuss this anomalous aspect of the El Chichón eruption, some regularity in the process of re-awakening of dormant (here defined as a period of quiescence of more than 100 years) andesite and dacite volcanoes are studied based on the seismic activity recorded at the volcanoes Bezymianny, Mount St. Helens, El Chichón, Unzen, Pinatubo and Soufrière Hills. Three stages were identified in the re-awakening activity of these volcanoes: (1) preliminary seismic activity, leading up to the first phreatic explosion; (2) activity between the first and the largest explosions; (3) post-explosion dome-building process. The eruptions were divided into two groups: low-VEI (Volcanic Explosivity Index) and the long duration stage-1 events (Unzen, 1991 and Soufrière Hills volcano, 1995) and high-VEI and the short duration stage-1 events (Bezymianny, 1956; Mount St. Helens, 1980; El Chichón, 1982 and Pinatubo, 1992). The comparative analysis of the seismo-eruptive activity of two eruptions of the second group, the 1980 of Mt. St. Helens and the 1982 of El Chichón, produced an explanation the absence of new dome building during the 1982 eruption of El Chichón volcano. It may be explained in terms of the unusually rapid emission of gas and water from the magmatic and hydrothermal system beneath the volcano during a relatively short sequence of large explosions that could have sharply increased the viscosity of the magma making impossible its exit to the surface.  相似文献   

7.
Eruptions of Mount St Helens (Washington, USA) decreased in intensity and explosivity after the main May 18, 1980 eruption. As the post-May 18 eruptions progressed, albitic plagioclase microlites began to appear in the matrix glass, although the bulk composition of erupted products, the phenocryst compositions and magmatic temperatures remained fairly constant. Equilibrium experiments on a Mount St Helens white pumice show that at 160 MPa water pressure and 900°C, conditions deduced for the 8 km deep magma storage zone, the stable plagioclase is An47. The microlites in the natural samples, which are more albitic, had to grow at lower water pressures during ascent. Isothermal decompression experiments reported here demonstrate that a decrease in water pressure from 160 to 2 MPa over four to eight days is capable of producing the albitic groundmass plagioclase and evolved melt compositions observed in post-May 18 1980 dacites. Because groundmass crystallization occurs over a period of days during and after decreases in pressure, microlite crystallization in the Mount St Helens dacites must have occurred during the ascent of each magma batch from a deep reservoir rather than continuously in a shallow holding chamber. This is consistent with data on the kinetics of amphibole breakdown, which require that a significant portion of magma vented in each eruption ascended from a depth of at least 6.5 km (160 MPa water pressure) in a matter of days. The size and shape of the microlite population have not been studied because of the small size of the experimental samples; it is possible that the texture continues to mature long after chemical equilibrium is approached. As the temperature, composition, crystal content and water content of magma in the deep reservoir remained approximately constant from May 1980 to at least March 1982, the spectacular decrease in eruption intensity during this period cannot be attributed to changes in viscosity or density of the magma. Simple fluld mechanical considerations indicate, however, that the observed changes in mass flux of magma can be modelled by a five-fold decrease in conduit radius from 35 to 7 m, produced perhaps by plating of magma along the conduit walls. The decreased ascent rates which accompanied the decrease in conduit radius can explain the change from closed-system to open-system degassing and the shift from explosive to effusive eruptions during 1980.  相似文献   

8.
The analysis of the earthquake time distribution at Mount St. Helens reveals a good correlation between the physical state of the volcano and statistical parameters of earthquake sequence. There are three main seismic phases in the whole 1980–1986 period. The first one precedes the main eruption of May 18, 1980. It begins with a sudden increase of the seismicity level in late March and continues with an Utsu (1961) type decay of the seismic occurrence rate, characterized by a small value of the decay coefficient, β. The second phase lasts from the cataclysmic eruption on May 18, 1980 until the continuous dome building episode in 1983 and is characterized by a very slow exponential increase of the background level of seismicity. The third phase covers the remaining part of the sample and is characterized by a stationary earthquake clustering process episodically interrupted by peaks of activity related to eruptions. The trends in seismic occurrence rate within each phase, as well as the statistical parameter variations at each transition, are analyzed and discussed in the framework of volcanic activity. This leads to the conclusion that statistical techniques may give a significant contribution in understanding changes in volcanic processes such as those at Mount St. Helens.  相似文献   

9.
10.
Abstract

Stream channel development in response to the eruption of Mount St. Helens on 18 May 1980, resulted in some of the largest sediment yields documented anywhere on earth. Development of new channels on the 2.7 km3 debris-avalanche deposit in the North Fork Toutle River caused net erosion of as much as 1.3 x 105 t km?2 annually. Development of these channels followed a four-stage sequence of channel initiation, channel incision with relatively constant width-to-depth ratio, channel widening accompanied by aggradation, and channel widening accompanied by scour-and-fill with little change in average channel elevation. These channels remain unstable both in width and elevation. Lahars affected channel and valley morphology on all flanks of the volcano. Steep, upstream reaches generally incised and widened during the first year following the eruption and aggraded during the following three years. Gently sloping downstream reaches aggraded and widened during the first year and incised during the following three years. The most rapid adjustments occurred during the first two winters following the eruption. The principal effect of the blast on channels throughout the 550 km2 devastated area was the subsequent rapid delivery of sand- and silt-size sediment eroded from hillslopes. Channels aggraded during early storms of the 1980–1981 winter but incised during later storms the same winter. Subsequent channel enlargement was constrained by logs deposited in channels by the blast and by post-1980 shallow debris slides. Since 1984, instability and sedimentation in laharand blast-affected channels have been within the range of pre-1980 levels.  相似文献   

11.
火山空降碎屑灾害预测软件包的研制   总被引:2,自引:2,他引:2       下载免费PDF全文
赵谊  马宝君  施行觉 《地震地质》2003,25(3):480-490
简述了火山空降碎屑灾害的危害性 ,指出研制火山空降碎屑灾害预测软件包的实际意义。介绍了软件的主要结构框图、软件设计的基本思路和结构设计时的几点考虑。介绍了在VisualBasic6 .0平台下 ,碎屑粒径参数、岩浆黏度、结晶压力、喷出压力、给定时间段和特定区域的各高度层风参数、岩浆动力学参数、喷出物总量、抛射体分布、坍塌阶段碎屑分布和扩散阶段碎屑分布计算等各程序的主要结构及主要功能。介绍了在Mapinfor 6 .0平台下软件的主要功能。给出了实现该软件包各项功能的理论基础和科学依据 ,并展示了 1980年 5月 18日美国圣海伦斯火山喷发的空降碎屑分布计算的实例 ,同时把计算结果与实际观测数据进行了对比 ,从而使模型的改进工作和软件的正确性得到了验证。最后 ,对软件存在的缺陷和需要进一步改进之处进行了细致的分析  相似文献   

12.
This paper lays the foundation for the rigorous treatment of the energetics of gas exsolution from a gas-containing liquid, which powers gas-driven volcanic and limnic eruptions. Various exsolution processes (reversible or irreversible, slow or rapid) are discussed, and the maximum amount of kinetic energy derivable from a reversible gas exsolution process is obtained. The concept of dynamic irreversibility is proposed for discussing the kinetic energy available from irreversible gas exsolution processes. The changes of thermodynamic properties during gas exsolution processes are derived. Density–pressure relations for gas–liquid mixtures are presented, including empirical relations for irreversible gas exsolution. The energetics of gas-driven eruptions through both fluid and rigid media, including the role of buoyancy and the role of magma chamber expansion work, are investigated. For reversible processes, the energetics can be used to discuss the dynamics of gas-driven eruptions, leading to maximum erupting velocities and maximum eruptible fractions. For irreversible processes, empirical relations and parameters must be employed. The exit velocities of the Lake Nyos eruption and the 18 May 1980 eruption of Mount St. Helens are modeled by incorporating possible irreversibility.  相似文献   

13.
A steady-state, one-dimensional, and nonhomogeneous two-phase flow model was developed for the prediction of local flow properties in volcanic conduits. The model incorporates the effects of relative velocity between the phases and for the variable magma viscosity. The resulting set of nonlinear differential equations was solved by a stiff numerical solver and the results were verified with the results of basaltic fissure eruptions obtained by a homogeneous two-phase flow model, before applying the model to the eruptions of Mt. St. Helens and Vesuvius volcanoes. This verification, and a study of the sensitivity of several modeling parameters, proved effective in establishing the confidence in the predicted nonequilibrium results of flow distribution in the conduits when the mass flow rate is critical or maximum. The application of the model to the plinian eruptions of Mt. St. Helens on May 18, 1980, and Vesuvius in AD 79, demonstrates the sensitivity of the magma discharge rate and distributions of pressure, volumetric fraction, and velocities of phases, on the hydrous magma viscosity feeding the volcanic conduits. Larger magma viscosities produce smaller mass discharge rates (or greater conduit diameters), smaller exit pressures, larger disequilibrium between the phases, and larger difference between the local lithostatic and fluid pressures in the conduit. This large pressure difference occurs when magma fragments and may cause a rupture of the conduit wall rocks, producing a closure of the conduit and cessation of the volcanic eruption, or water pouring into the conduit from underground aquifers leading to phreatomagmatic explosions. The motion of the magma fragmentation zone along a conduit during an eruption can be caused by the varying viscosity of magma feeding the volcanic conduit and may cause intermittent phreatomagmatic explosions during the plinian phases as different underground aquifers are activated at different depths. The variation of magma viscosity during the eruptions of Mt. St. Helens in 1980 and Vesuvius in AD 79 is normally associated with the tapping of magmas from different depths of the magma chambers. This variation of viscosity, which can include different crystal and dissolved water contents, can also produce conduit wall erosion, the onset and collapse of volcanic columns above the vent, and the onset and cessation of pyroclastic flows and surges.  相似文献   

14.
Field, geochronologic, and geochemical evidence from proximal fine-grained tephras, and from limited exposures of Holocene lava flows and a small pyroclastic flow document ten–12 eruptions of Mount Rainier over the last 2,600 years, contrasting with previously published evidence for only 11–12 eruptions of the volcano for all of the Holocene. Except for the pumiceous subplinian C event of 2,200 cal year BP, the late-Holocene eruptions were weakly explosive, involving lava effusions and at least two block-and-ash pyroclastic flows. Eruptions were clustered from ∼2,600 to ∼2,200 cal year BP, an interval referred to as the Summerland eruptive period that includes the youngest lava effusion from the volcano. Thin, fine-grained tephras are the only known primary volcanic products from eruptions near 1,500 and 1,000 cal year BP, but these and earlier eruptions were penecontemporaneous with far-traveled lahars, probably created from newly erupted materials melting snow and glacial ice. The most recent magmatic eruption of Mount Rainier, documented geochemically, was the 1,000 cal year BP event. Products from a proposed eruption of Mount Rainier between AD 1820 and 1854 (X tephra of Mullineaux (US Geol Surv Bull 1326:1–83, 1974)) are redeposited C tephra, probably transported onto young moraines by snow avalanches, and do not record a nineteenth century eruption. We found no conclusive evidence for an eruption associated with the clay-rich Electron Mudflow of ∼500 cal year BP, and though rare, non-eruptive collapse of unstable edifice flanks remains as a potential hazard from Mount Rainier. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. T. W. Sisson and J. W. Vallance contributed equally to this study.  相似文献   

15.
 The postglacial eruption rate for the Mount Adams volcanic field is ∼0.1 km3/k.y., four to seven times smaller than the average rate for the past 520 k.y. Ten vents have been active since the last main deglaciation ∼15 ka. Seven high flank vents (at 2100–2600 m) and the central summit vent of the 3742-m stratocone produced varied andesites, and two peripheral vents (at 2100 and 1200 m) produced mildly alkalic basalt. Eruptive ages of most of these units are bracketed with respect to regional tephra layers from Mount Mazama and Mount St. Helens. The basaltic lavas and scoria cones north and south of Mount Adams and a 13-km-long andesitic lava flow on its east flank are of early postglacial age. The three most extensive andesitic lava-flow complexes were emplaced in the mid-Holocene (7–4 ka). Ages of three smaller Holocene andesite units are less well constrained. A phreatomagmatic ejecta cone and associated andesite lavas that together cap the summit may be of latest Pleistocene age, but a thin layer of mid-Holocene tephra appears to have erupted there as well. An alpine-meadow section on the southeast flank contains 24 locally derived Holocene andesitic ash layers intercalated with several silicic tephras from Mazama and St. Helens. Microprobe analyses of phenocrysts from the ash layers and postglacial lavas suggest a few correlations and refine some age constraints. Approximately 6 ka, a 0.07-km3 debris avalanche from the southwest face of Mount Adams generated a clay-rich debris flow that devastated >30 km2 south of the volcano. A gravitationally metastable 2-to 3-km3 reservoir of hydrothermally altered fragmental andesite remains on the ice-capped summit and, towering 3 km above the surrounding lowlands, represents a greater hazard than an eruptive recurrence in the style of the last 15 k.y. Received: 24 June 1996 / Accepted: 6 December 1996  相似文献   

16.
Summary The paleodeclination and paleoinclination logs compiled from the cores taken from Mara Lake show consistent, well defined oscillations. It was hoped that the Mt. St. Helens and Mt. Mazama tephra layers encountered in the cores would provide accurate, absolute dating control of the cores as well for the paleodeclination and paleoinclination logs. Unfortunately the dates of 3300 BP for the Mt. St. Helens tephra and 6845 ± 50 BP for the Mt. Mazama tephra are incompatible with a constant rate of sedimentation. It would appear that the Mt. Mazama date is valid and a redetermination of the Mt. St. Helens date based on the 6845 ± 50 BP date for the Mt. Mazama tephra and a constant rate of sedimentation from Mazama time to the present gives a date of 4100 BP for the Mt. St. Helens tephra. This dating control has been used to construct paleodeclination and paleoinclination logs versus time which correlate well with paleomagnetic logs from Fish Lake, Oregon and Shawnigan Lake on Vancouver Island.Presented at 2nd conference on New Trends in Geomagnetism, Castle Bechyn, Czechoslovakia, September 24–29, 1990.  相似文献   

17.
The eruptions of Nevado del Ruiz in 1985 were unusually rich in sulfur dioxide. These eruptions were observed with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) which can quantitatively map volcanic sulfur dioxide plumes on a global scale. A small eruption, originally believed to be of phreatic origin, took place on September 11, 1985. However, substantial amounts of sulfur dioxide from this eruption were detected with TOMS on the following day. The total mass of SO2, approximately 9 ± 3 × 104 metric tons, was deposited in two clouds, one in the upper troposphere, the other possibly at 15 km near the stratosphere.The devastating November 13 eruptions were first observed with TOMS at 1150 EST on November 14. Large amounts of sulfur dioxide were found in an arc extending 1100 km from south of Ruiz northeastward to the Gulf of Venezuela and as an isolated cloud centered at 7°N on the Colombia-Venezuela border. On November 15 the plume extended over 2700 km from the Pacific Ocean off the Colombia coast to Barbados, while the isolated mass was located over the Brazil-Guyana border, approximately 1600 km due east of the volcano. Based on wind data from Panama, most of the sulfur dioxide was located at 10–16 km in the troposphere and a small amount was quite likely deposited in the stratosphere at an altitude above 24 km.The total mass of sulfur dioxide in the eruption clouds was approximately 6.6 ± 1.9 × 105 metric tons on November 14. When combined with quiescent sulfur dioxide emissions during this period, the ratio of sulfur dioxide to erupted magma from Ruiz was an order of magnitude greater than in the 1982 eruption of El Chichon or the 1980 eruption of Mount St. Helens.  相似文献   

18.
During the large explosions of the Bezymianny (1956), Shiveluch (1964) and Mount St. Helens (1980) volcanoes, 4.8·1012, 3.0·1012 and 8.2·1012 kg of resurgent and magmatic material were ejected respectively. The eruptions were preceded and accompanied by significant crustal deformations and by a great number of volcanic earthquakes. In all three cases, earthquakes with an energy of E = 109 J occurred 8–11 days before the eruption; their foci were at a distance of less than 5 km from the floor of the active crater and the power of earthquake swarms increased continuously and monotonously until the beginning of the eruption. The data obtained on deformations, earthquakes and volcanic activity may be used for the prediction of the place, time, energy and hazards of large explosions of andesitic volcanoes.  相似文献   

19.
20.
Seismicity is one of the most commonly monitored phenomena used to determine the state of a volcano and for the prediction of volcanic eruptions. Although several real-time earthquake-detection and data acquisition systems exist, few continuously measure seismic amplitude in circumstances where individual events are difficult to recognize or where volcanic tremor is prevalent. Analog seismic records provide a quick visual overview of activity; however, continuous rapid quantitative analysis to define the intensity of seismic activity for the purpose of predicing volcanic eruptions is not always possible because of clipping that results from the limited dynamic range of analog recorders. At the Cascades Volcano Observatory, an inexpensive 8-bit analog-to-digital system controlled by a laptop computer is used to provide 1-min average-amplitude information from eight telemetered seismic stations. The absolute voltage level for each station is digitized, averaged, and appended in near real-time to a data file on a multiuser computer system. Raw realtime seismic amplitude measurement (RSAM) data or transformed RSAM data are then plotted on a common time base with other available volcano-monitoring information such as tilt. Changes in earthquake activity associated with dome-building episodes, weather, and instrumental difficulties are recognized as distinct patterns in the RSAM data set. RSAM data for domebuilding episodes gradually develop into exponential increases that terminate just before the time of magma extrusion. Mount St. Helens crater earthquakes show up as isolated spikes on amplitude plots for crater seismic stations but seldom for more distant stations. Weather-related noise shows up as low-level, long-term disturbances on all seismic stations, regardless of distance from the volcano. Implemented in mid-1985, the RSAM system has proved valuable in providing up-to-date information on seismic activity for three Mount St. Helens eruptive episodes from 1985 to 1986 (May 1985, May 1986, and October 1986). Tiltmeter data, the only other telemetered geophysical information that was available for the three dome-building episodes, is compared to RSAM data to show that the increase in RSAM data was related to the transport of magma to the surface. Thus, if tiltmeter data is not available, RSAM data can be used to predict future magmatic eruptions at Mount St. Helens. We also recognize the limitations of RSAm data. Two examples of RSAM data associated with phreatic or shallow phreatomagmatic explosions were not preceded by the same increases in RSAM data or changes in tilt associated with the three dome-building eruptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号