首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In classical plasticity there are clear mathematical links between the dissipation function and the consequent yield function and flow rule. These links help to construct constitutive equations with the minimum of adjustable parameters. Modelling granular materials, however, requires that the dissipation function depends on the current stress state (frictional plasticity) and this changes the mathematical structure—altering the links and invalidating the associated flow rule. In this paper we show, for a large family of dissipation functions, how much of the structure remains intact when frictional dissipation is included. The surviving links are examined using straightforward physically based graphical insight and well‐established mathematical techniques leading to a central result, which provides a mathematical justification for the procedural features of hyperplasticity. This should allow hyperplasticity to be used more widely and certainly with increased confidence. As an example of the effectiveness of the general method, two specific dissipation functions are constructed from the simple physical concepts of sliding friction and granule damage. One is based on a Drucker–Prager cone and the other a Matsuoka–Nakai cone, both incorporate kinematic hardening and a compactive cap. In each Case a single smooth yield function with consistent flow rules is produced. The computational usefulness of an inequality derived in the paper is demonstrated in the generation of the figures showing yield surfaces and flow directions by means of a simple maximization procedure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
3.

Macroscopic frictional behavior of granular materials is of great importance for studying several complex problems associated with fault slip and landslides. The main objective of this study is to model the macroscale frictional behavior of granular soils under monotonic and cyclic loadings based upon micromechanical determination of dissipated energy at particle contacts. This study is built on the general observation that the externally computed energy dissipation should be equal to the total internal energy dissipation derived from inter-particle sliding and rolling, energy losses from inter-particle collisions, and damping. For this purpose, the discrete element method is used to model a granular soil and determine the stored, dissipated, and damping energies associated with shear loading for applied monotonic and cyclic velocities. These energies are then related to the friction by an application of the Taylor-critical state power balance relationship. Also, the contributions of the different modes of energy dissipation (normal, shear, and rolling) to the total frictional resistance were studied. By changing the inter-particle friction, the simulations showed that the macroscopic friction was nearly constant, the slip friction increased almost linearly with increasing inter-particle friction, and the difference between the two was attributed to the non-energy dissipating dilatancy component. By providing a clear relationship between energy dissipated by micro-scale mechanisms versus the traditional engineering definition based on macro-scale (continuum) parameters, this study provides a means to develop a better understanding for the frictional behavior of granular media.

  相似文献   

4.
The weak turbulent motions of a dry granular dense flow and the influence of the turbulent fluctuations caused by the minor short-term elastic/inelastic instantaneous collisions and the major long-term enduring frictional contacts among the grains on the mean flow characteristics are investigated. To this end, the conventional Reynolds-averaging process is applied to obtain the balance equations for the mean primitive fields associated with turbulent closure models. The thermodynamic analysis, based on the Mueller–Liu entropy principle, is carried out to derive the equilibrium formulations of the closure models. It shows that the effect of the turbulent fluctuations on the mean flow characteristics as well as the turbulent kinetic energy and dissipation can be taken into account by the granular coldness: a phenomenological measure of the fluctuating kinetic energy intensity. The implementation of the complete thermodynamically consistent turbulent closure models and the simulation of a gravity-driven stationary flow down an inclined moving plane compared with the experimental outcomes are provided in Part II of the present study.  相似文献   

5.
郑虎 《工程地质学报》2014,22(5):851-854
针对颗粒材料剪切变形的细观尺度研究,介绍了基于密度匹配原理的颗粒实现完全移除底部摩擦力的光弹试验技术。通过对密实度为82%的光弹颗粒系统进行直剪变形研究,研究结果表明颗粒系统在直剪试验过程中,力链的主方向即主应力方向沿着剪切室短对角线方向发展,并贯穿于整个颗粒系统后在剪切室的边界处达到应力平衡; 而颗粒系统中各颗粒的位移场在归一化后表现出很好沿剪切室中轴的对称性。  相似文献   

6.
Shen  Chaomin  Liu  Sihong  Wang  Liujiang  Wang  Yishu 《Acta Geotechnica》2019,14(4):939-954

The particle breakage of granular materials under compression is a phenomenon of great importance. In this paper, a micromechanically based model for the compression of crushable granular materials is developed in the framework of thermomechanics. Both the internal and dissipative energies in the model are derived using the micro–macro volume averaging approach to ensure that all parameters involved have concrete physical meanings. The particle breakage is quantified by the change of the maximum particle size, the size polydispersity and the fractal dimension of the gradation. Compared to other breakage models, there is a major difference that highlights the novelty of the proposed model: neither the ultimate particle size distribution, nor the evolution path of the gradation is predefined in the model. The initiation, evolution and the attenuation of the breakage can be determined by the maximum dissipation principle using thermomechanics and micromechanics. Finally, it is demonstrated that the proposed model can predict the stress dependence of the elastic bulk modulus, the size dependence of the yielding stress and the elastic–plastic-pseudoelastic phase transition of granular materials.

  相似文献   

7.
Finite element procedures for numerical solution of various engineering problems are often based on variational formulations. In this paper, a parametric variational principle applicable to elastic-plastic coupled field problems in consolidation analysis of saturated porous media is presented. This principle can be used to solve problems where materials are inconsistent with Drucker's postulate of stability, such as in non-associated plasticity flow or softening problems. The finite element formulation was given, and it can be solved by either the conventional method or a parametric quadratic programming method.  相似文献   

8.
A version of the Particle Finite Element Method applicable to geomechanics applications is presented. A simple rigid-plastic material model is adopted and the governing equations are cast in terms of a variational principle which facilitates a straightforward solution via mathematical programming techniques. In addition, frictional contact between rigid and deformable solids is accounted for using an approach previously developed for discrete element simulations. The capabilities of the scheme is demonstrated on a range of quasi-static and dynamic problems involving very large deformations.  相似文献   

9.
Macroscopic frictional slip in water-saturated granular media occurs commonly during landsliding, surface faulting, and intense bedload transport. A mathematical model of dynamic pore-pressure fluctuations that accompany and influence such sliding is derived here by both inductive and deductive methods. The inductive derivation shows how the governing differential equations represent the physics of the steadily sliding array of cylindrical fiberglass rods investigated experimentally by Iverson and LaHusen (1989). The deductive derivation shows how the same equations result from a novel application of Biot's (1956) dynamic mixture theory to macroscopic deformation. The model consists of two linear differential equations and five initial and boundary conditions that govern solid displacements and pore-water pressures. Solid displacements and water pressures are strongly coupled, in part through a boundary condition that ensures mass conservation during irreversible pore deformation that occurs along the bumpy slip surface. Feedback between this deformation and the pore-pressure field may yield complex system responses. The dual derivations of the model help explicate key assumptions. For example, the model requires that the dimensionless parameterB, defined here through normalization of Biot's equations, is much larger than one. This indicates that solid-fluid coupling forces are dominated by viscous rather than inertial effects. A tabulation of physical and kinematic variables for the rod-array experiments of Iverson and LaHusen and for various geologic phenomena shows that the model assumptions commonly are satisfied. A subsequent paper will describe model tests against experimental data.  相似文献   

10.
This paper presents a procedure for developing elasto‐plastic material models from a dissipation function and kinematic constraint that obviates the need to establish an expression for the yield function. This method could be applied to a wide range of different materials, but it is particularly suitable for testing new models of granular materials. This is because there is often a difficulty associated with finding an algebraic expression for the yield function for appropriate dissipation functions combined with realistic dilatancy rules. The procedure presented in this paper allows the approach to fulfill its potential for the easy incorporation of physical insight into the dissipation function and kinematic constraint without being hindered by algebraic complexity. The method is applied to the familiar von Mises model and also to a model for granular materials that incorporates a realistic dilatancy rule and extends into three dimensions a model presented in earlier work. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Unified modelling of granular media with Smoothed Particle Hydrodynamics   总被引:1,自引:1,他引:0  
In this paper, we present a unified numerical framework for granular modelling. A constitutive model capable of describing both quasi-static and dynamic behaviours of granular material is developed. Two types of particle interactions controlling the mechanical responses, frictional contact and collision, are considered by a hypoplastic model and a Bagnold-type rheology relation, respectively. The model makes no use of concepts like yield stress or flow initiation criterion. A smooth transition between the solid-like and fluid-like behaviour is achieved. The Smoothed Particle Hydrodynamics method is employed as the unified numerical tool for both solid and fluid regimes. The numerical model is validated by simulating element tests under both quasi-static and flowing conditions. We further proceed to study three boundary value problems, i.e. collapse of a granular pile on a flat plane, and granular flows on an inclined plane and in a rotating drum.  相似文献   

12.
It has been known that classical continuum mechanics laws fail to describe strain localization in granular materials due to the mathematical ill‐posedness and mesh dependency. Therefore, a non‐local theory with internal length scales is needed to overcome such problems. The micropolar and high‐order gradient theories can be considered as good examples to characterize the strain localization in granular materials. The fact that internal length scales are needed requires micromechanical models or laws; however, the classical constitutive models can be enhanced through the stress invariants to incorporate the Micropolar effects. In this paper, Lade's single hardening model is enhanced to account for the couple stress and Cosserat rotation and the internal length scales are incorporated accordingly. The enhanced Lade's model and its material properties are discussed in detail; then the finite element formulations in the Updated Lagrangian Frame (UL) are used. The finite element formulations were implemented into a user element subroutine for ABAQUS (UEL) and the solution method is discussed in the companion paper. The model was found to predict the strain localization in granular materials with low dependency on the finite element mesh size. The shear band was found to reflect on a certain angle when it hit a rigid boundary. Applications for the model on plane strain specimens tested in the laboratory are discussed in the companion paper. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents a procedure for developing yield functions with consistent flow rules for granular materials from a family of two parameter dissipation functions in combination with appropriate kinematic constraints. Through a mathematical procedure described in the paper, a general formulation is developed that can, by adjusting the values of the two parameters, reproduce a wide range of yield surfaces, including the Drucker–Prager, Matsuoka–Nakai, and Lade–Duncan. Specifically, an analytical expression for the yield function is obtained in terms of a parameter that is a selected solution to a high order polynomial. The roots of this polynomial can always be found using the eigenvalues of the companion matrix and instructions on how to select the appropriate root are given in the paper. Two ways of incorporating anisotropy into the procedure are explored and the role within it of the recent history of deformation is examined.  相似文献   

14.
流态化运动是高速远程滑坡的主要运动形式,是揭示高速远程滑坡运动机理的重要基础。基于粒子图像测速(PIV)分析方法,采用物理模型试验对不同粒径组成条件下的颗粒流内部的速度分布、剪切变形及流态特征进行了研究,并对高速远程滑坡流态化运动特征进行了讨论分析。结果表明:碎屑流流态化运动特征与颗粒粒径呈显著的相关性,随着粒径的减小或细颗粒含量的增加,颗粒流底部相对于边界的滑动速度以及整体的运动速度均呈逐渐减小的趋势,颗粒流内部剪切变形程度增加,颗粒的运动形式由“滑动”向“流动”转变;当颗粒粒径较小或细颗粒含量较高时,颗粒流内部剪切速率增大的趋势在颗粒流底部更加显著,反映了粒径减小有助于促进颗粒流内部剪切向底部的集中;在同一颗粒流的不同运动阶段及不同纵向深度,其流态特征具有显著差别,颗粒流前缘及尾部主要呈惯性态,颗粒间以碰撞作用为主,而主体部分则主要呈密集态,颗粒间以摩擦接触作用为主;在颗粒流表面及底部,颗粒间相互作用方式主要是碰撞作用,中间部分则以摩擦作用为主;对于不同粒径的颗粒流,随着粒径的增大或粗颗粒含量的增加,颗粒流内部颗粒的碰撞作用加强,颗粒流整体趋于向惯性态转变。  相似文献   

15.
张琰  彭翀  李星 《岩土力学》2011,32(6):1898-1904
径向基函数点插值无网格法(radial point interpolation method,RPIM)是一种新型的无网格法,其形函数具有插值特性,且形式简单,易于施加本质边界条件。文中介绍了径向基函数点插值无网格法的基本原理,推导了三维情况下点插值无网格法的基本公式。从变分原理出发,结合比奥固结理论,建立了流-固耦合的三维点插值无网格法基本方程和数值积分方法,并开发了相应计算程序。通过三维悬臂梁和单向固结问题的数值试验,验证了该方法对三维弹性问题和流-固耦合问题的适用性和有效性  相似文献   

16.
Dupuit(1863年)提出的模型是“圆岛状含水层稳定井流模型”,这个模型只有侧向湖海边界条件,而不涉及上边界降水入渗补给条件。因此,Dupuit模型只能在旱季用于地下水井流试验求取含水系统的参数,而不能够用于预测。文章发展Dupuit潜水井流模型,考虑地面均匀稳定入渗补给(蒸发排泄示为其负值)作用。以质量守衡原理为基础,假定渗流服从Darcy定律并满足Dupuit徦定,建立极坐标下的地下水流微分方程,再依边界条件建立相应的流量方程和水位方程。这些方程为具地面入渗补给条件下井流试验求取水文地质参数以及预测相应条件下地下水抽水的效果,提供了基础条件。讨论了引入Dupuit假定对本问题解析研究可以降维(略去z变量)带来好处的同时,在地下水分水岭附近及抽水井附近可能出现偏离Dupuit假定,建议在抽水试验求取含水层参数时,观测孔的部署要尽量回避这些区段。  相似文献   

17.
采用改进的低频内耗仪研究了几种常见颗粒体系(沙子、玻璃珠)的相对能量耗散性质:能量耗散的振幅谱和频率谱。实验发现,振幅谱中随振幅增大形成一个能量耗散峰,而频率谱线中则观察到随着频率的增加依次出现四个能量耗散峰,对应着体系模量的四个衰减。随探针插入深度的增加相对能耗先增加后减小,出现一个能耗峰值,该峰值对应的深度为体系的临界深度。基于对颗粒体系的介观分析,提出一个流变模型来阐述流变耗散机制,结果表明摩擦在颗粒力学响应中除耗散能量外还起到增加体系弹性的作用。频率谱的分析表明颗粒中还存在另一种耗散机制:颗粒链的共振耗散。  相似文献   

18.
根据颗粒离散元Kelvin 接触力计算模型,分析了圆形颗粒体模拟材料力学特性应具备的条件,在此基础上提出了一种新颗粒模型构建方法。该方法首先在复杂模型域内随机生成种子,然后利用相切条件逐步扩展填充整个区域。填充过程中借助局部Delaunay三角化网格控制新颗粒的生成,采用复杂几何体距离控制颗粒与模型边界的相对位置,对靠近模型边界的颗粒进行容忍性优化填充,从而增加模型颗粒与边界的耦合性。同时对模型孔隙进行再填充,保证每个填充颗粒至少与3个颗粒相切,提高了模型内颗粒间的耦合性和模型的密度。最后采用任意多边形控制材料边界,将模型材料的设置简化为判断点是否在多边形内,简化了复杂模型材料属性的设置过程。结果表明:与膨胀颗粒生成法相比,该方法生成模型重叠量小、颗粒间及颗粒-边界相互耦合、填充率高。因此,颗粒黏结力破坏后不会造成飞溢现象,可适用于任意连通域模型的生成,能更好地实现复杂岩土细观介质变形破坏机制的模拟与研究。  相似文献   

19.
Whilst faulting in the shallow crust is inevitably associated with comminution of rocks, the mechanical properties of the comminuted granular materials themselves affect the slip behavior of faults. Therefore, the mechanical behavior of any fault progresses along an evolutionary path. We analyzed granular fault rocks from four faults, and deduced an evolutionary trend of fractal size frequency. Comminution of fault rocks starts at a fractal dimension close to 1.5 (2-D measurement), at which a given grain is supported by the maximum number of grains attainable and hence is at its strongest. As comminution proceeds, the fractal dimension increases, and hence comminution itself is a slip weakening mechanism. Under the appropriate conditions, comminuted granular materials may be fluidized during seismic slip events. In this paper, we develop a new method to identify the granular fault rocks that have experienced fluidization, where the detection probability of fragmented counterparts is a key parameter. This method was applied to four fault rock samples and a successful result was obtained. Knowledge from powder technology teaches us that the volume fraction of grains normalized by maximum volume fraction attainable is the most important parameter for dynamic properties of granular materials, and once granular fault materials are fluidized, the fault plane becomes nearly frictionless. A small decrease in the normalized volume fraction of grains from 1 is a necessary condition for the phase transition to fluidization from the deformation mechanism governed by grain friction and crushing by contact stresses. This condition can be realized only when shearing proceeds under unconstrained conditions, and this demands that the gap between fault walls is widened. Normal interface vibration proposed by Brune et al. [Tectonophysics 218 (1993) 59] appears to be the most appropriate cause of this, and we presented two lines of field evidence that support this mechanism to work in nature.  相似文献   

20.
刘洋  于鹏强  徐硕 《岩土力学》2022,43(3):635-648
基于散粒体微观力学理论,忽略颗粒转动引起的相对位移,考虑颗粒接触的组构各向异性,根据宏微观能量守恒推导得到了散体材料各向异性微形态本构关系,进而通过单位接触方向积分的递推公式推导出了各向异性本构张量表达式;在此基础上,根据哈密顿原理得到了各向异性散体材料的运动平衡方程和边界条件,从而求得了平面波在各向异性散粒体中的传播规律和频散关系,最后对波的频散关系和频率带隙进行了详细的参数分析。研究表明:该模型预测了散体中包含3类12种位移波:3种纵波、6种横波和3种平面内横向剪切波;横观各向同性条件下,接触各向异性参数a20越大,纵波和横波的频率越大,而平面内横向剪切波的频率越小;正交各向异性条件下,随着接触各向异性参数a22的增大,与2方向运动相关的横波频率增大,而与3方向运动相关的横波频率则减小;但a22的变化对纵波频率影响很小。材料各向异性程度对横波带宽影响不大,但对纵波带宽影响较大:a20的增大使得声?光学波间的带宽减小,而光学波间的带宽增大,当a20>0.84时,声?光学波间的带隙消失;但是a22的增大则使得声?光学波间的带宽增大,而光学波间的带宽减小。退化为各向同性模型后,预测3类波的频散曲线与其他各向同性模型的结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号