首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous analyses have identified the active width of braided rivers, the bed area over which bed load flux and short‐term morphological change occurs, as an important element of braiding dynamics and predictions of bed load flux. Here we compare theoretical predictions of active width in gravel‐bed braided rivers with observations from Sunwapta River, and from a generic physical model of gravel braided rivers, to provide general observations of the variation in active width, and to develop an understanding of the causes of variation. Bed topography was surveyed daily along a 150 m reach of the pro‐glacial Sunwapta River for a total of four weeks during summer when flow was above threshold for morphological activity. In the laboratory, detailed digital elevation models (DEMs) were derived from photogrammetric survey at regular intervals during a constant discharge run. From the field and flume observations there is considerable local and circumstantial variation in active width, but also a general trend in average active width with increasing discharge. There is also a clear relationship of active width with active braiding index (number of active branches in the braided channel network), and with dimensionless stream power, which appears to be consistent across the range of data from field and physical models. Thus there is a link between active width and the river morphology and dynamics, and the possibility of a general relationship for estimating active width from channel pattern properties or reach‐scale stream power values, from which approximate bedload flux calculations may be made. The analysis also raises questions about differences between hydraulically‐based numerical model computations of instantaneous active width and observation of time‐integrated morphological active width. Understanding these differences can give insight into the nature of bedload transport in braided rivers and the relationship to morphological processes of braiding. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Planimetric change was measured on daily hydrographs over two meltwater seasons using time-lapse images of the proglacial, gravel, braided, Sunwapta River, Canada. Significant planimetric change occurred on 10–15 days per year. Area of planimetric change correlated with peak and total daily meltwater hydrograph discharge. A clear threshold discharge can be identified below which no planform activity occurs, an intermediate range over which change occurs conditionally, and a peak flow range at which significant change always occurs. Field conditions were reproduced in a physical model in a laboratory flume. Photogrammetric DEMs of bed morphology and measurements of bedload output were made for each hydrograph experimental run. The physical model results for planimetric change had a threshold discharge for change, and trend with discharge, similar to the field data. The model data also show that planimetric change correlates strongly with volumes of erosion/deposition measured from successive DEMs, and with bedload transport rate. The relation between planimetric change and topographic change is also apparent from previous cross-section surveys at the field site. The results highlight the planimetric dynamics of braiding rivers in relation to discharge forcing, and the relationship between planimetric change, morphological change, and bedload transport in braided rivers. This also points to the potential use of measurements of planimetric change from time-lapse imagery as a low-cost method for high-frequency monitoring for braiding dynamics and also a surrogate for bedload transport measurement. © 2018 John Wiley & Sons, Ltd.  相似文献   

3.
1INTRODUCTIONTheBedloadtransportofthealluvialriversisoneofthebasicproblemsinrivetdynamics.Itisbasisfortheplaninganddesignoftherivertrainingworks.Since1879DuBoyspresentedthefirstbedloadtransportformulaintermsofthebedshearstress,manyexperimentalorexperimental-theoreticalformulasfartheevaluationofbedloadtransporthavebeenwidelydevelopedthroughusingdifferentprinciplesandbasedondifferentmeasureddata.TheyusuallygiveresultsatvariancewithoneanotherInrecentyearspeoplebegintousen~-friendlymeasuresi…  相似文献   

4.
Bedload pulses in gravel-bed rivers have been widely reported in recent years and attempts have been made to relate them to channel morphology. Bedload transport and channel morphology were measured in a small-scale generic model of braided gravel-bed streams. Two experiments are described in which braided channels developed in a 14 m × 3 m sand tray. Total bedload output from the tray was weighed every 15 minutes. Stream bed geometry was surveyed every four hours. Pulses were observed in the bedload output time series, and were qualitatively related to the channel morphology immediately upstream of the measuring section. The Bagnold (1980) bedload equation generally overpredicts measured bedload transport rates when applied to channels that were in equilibrium or aggrading. Underprediction occurred when applied to degrading channels. Aggradation was associated with channel multiplication and bar deposition. Channel pattern simplification occurred when degradation took place, and bars emerged from the water flow. Development of phases of aggradation and degradation is dependent upon the three-dimensional geometry of the stream beds. Spatial and temporal feedback loops can be identified, enabling links between channel morphology and bedload transport rate to be directly identified.  相似文献   

5.
The morphological active width, defined as the lateral extent of bed material displacement over time, is a fundamental parameter in multi‐threaded gravel‐bed rivers, linking complex channel dynamics to bedload transport. Here, results are presented from five constant discharge experiments, and three event hydrographs, covering a range of flow strengths and channel configurations for which morphological change, bedload transport rates, and stream power were measured in a physical model. Changes in channel morphology were determined via differencing of photogrammetrically‐derived digital elevation models (DEMs) of the model surface generated at regular intervals over the course of ~115 h of experimental runs. Independent measures of total bedload output were made using downstream sediment baskets. Results indicate that the morphological active width increases with total and dimensionless stream power and is strongly and positively correlated with bulk change (total volume of bed material displaced over time) and active braiding intensity (ABI). Although there is considerable scatter due to the inherent variability in braided river morphodynamics, the active width is positively correlated with independent measurements of bedload transport rate. Active width, bulk change, and bedload transport rates were all negligible below a dimensionless stream power threshold value of ~ 0.09, above which all increase with flow strength. Therefore, the active width could be used as a general predictor of bulk change and bedload transport rates, which in turn could be approximated from total and dimensionless stream power or ABI in gravel‐bed braided rivers. Furthermore, results highlight the importance of the active width, rather than the morphological active depth, in predicting volumes of change and bedload transport rates. The results contribute to the larger goals of better understanding braided river morphodynamics, creating large high‐resolution datasets of channel change for model calibration and validation, and developing morphological methods for predicting bedload transport rates in braiding river systems. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

6.
Key processes in stream ecosystems are linked to hydraulic retention, which is the departure of stream flow from ideal ‘plug flow’, and reflects fluid movement through surface and hyporheic storage zones. Most existing information about hyporheic exchange is based on flume studies or field measurements in relatively steep streams with beds coarser than sand. Stream tracer studies may be used to quantify overall hydraulic retention, but disaggregation of surface and hyporheic retention remains difficult. A stream tracer approach was used to compute the rates at which stream water is exchanged with water in storage zones (total storage) in short reaches of two small, sand‐bed streams under free and obstructed flow conditions. Tracer curves were fit to the one‐dimensional transport with inflow storage model OTIS‐P. Networks of piezometers were used to measure specific discharge between the stream and the groundwater. In the sand‐bed streams studied, parameters describing total retention were in the upper 50% of data compiled from the literature, most of which represented streams with beds coarser than sand. However, hyporheic storage was an insignificant component of total hydraulic retention, representing only 0·01–0·49% of total exchange, and this fraction did not increase after installation of flow obstructions. Total retention did not vary systematically with bed material size, but increased 50–100% following flow obstruction. Removal of roughness elements, such as large wood and debris dams, is detrimental to processes dependent upon transient storage in small, sand‐bed streams. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
Mountain streams with their tributary torrents build the upper part of the fluvial network. They are important regarding the transfer of sediment from headwaters to lower basins. Channels are typically steep with wide grain size distributions, ranging from fine sand up to large boulders, and a stabilized bed surface. Mountain streams often are supply-limited with respect to mobile bed load, which needs to be addressed when bed load transport equations are applied to such streams. To better understand supply limitation, laboratory experiments highlighting the effect of bed load supply on incipient motion and bed load transport rate are discussed. Experimental tests were done in which fine bed load was supplied to a previously armored channel bed, with flow conditions ranging from one-third to twice the critical dis-charge for the bed surface. At flows not exceeding the critical discharge, the time series of the bed load transport rate at the downstream model boundary featured consistent patterns which are attributed to distinct phases: (i) a temporal lag, (ii) an equilibrium state, and (iii) a post-supply phase. Bed load transport occurred even at flows distinctly below that for incipient motion of the bed surface. But, with the mass of total bed load outflow approaching the supply amount, the mass did not exclusively consist of supplied grains. The coarser the supplied bed load, the more sediment was mobilized from the bed surface. At higher flows, processes differed. Total bed load outflow exceeded the supply amount and the break-up of the armor layer caused a refining of the bed surface.  相似文献   

8.
The relation between morphological change and patterns of variation in bedload transport rate in braided streams was observed by repeated, daily topographic surveys over a 25 day study period in a 60 m reach of the proglacial Sunwapta River, Alberta, Canada. There are two major periods of morphological change, each lasting several days and each involving the complete destruction and reconstruction of bar complexes. Bar complex destruction was caused by redirection of the flow and by downstream extension of the confluence scour zone upstream. Reconstruction involved accretion of unit bars on bar head, flank and tail and in one case was initiated by disection of a large, lobate unit bar. High rates of sediment movement, measured from net scour and fill of the cross-sections, coincided with these morphological changes. Sediment was supplied from both bed and bank erosion, and patterns and distances of transfer were highly variable. Rates of transport estimated by matching upstream erosional volumes with downstream deposition were much greater than those estimated from either a step-length approach or a sediment budget. Measurements of scour and fill and observations of morphological change indicate that step lengths (virtual transport distances) were typically 40–100m during a diurnal discharge cycle. Shorter step lengths occurred when transfer was confined to a single anabranch and longer steps involved channel changes at the scale of the entire reach. Sediment budgeting was used to describe the spatial patterns of sediment transport associated with the morphological changes and to estimate minimum daily reach-averaged transport rates. Mean bedload transport rates correlate with discharge, but with considerable scatter. The largest deviations from the mean relation can be tied to phases of channel incision, bank erosion, scour hole migration, bar deposition and channel filling apparently controlled by changes and fluctuations in sediment supply from upstream, independent of discharge. These are interpreted as field evidence of ‘autopulses’ or ‘macropulses’ in bedload transport, previously observed only in laboratory models of braided streams.  相似文献   

9.
10.
Bed load transport in mountain streams is closely linked to streambed structures.Strambed structures are arrangements of boulders and cobbles deposited during extreme floods,in a stable configuration exhibiting high dissipation of flow.Field experiments were carried out in a mountain stream in Yunnan,southwestern China,studying bed load movement on three typical streambeds,i.e.,with well developed,partially developed,and no structures.An underwater observation and video-capturing system was designed to observe and measure the movement of bed load particles.The initiation mode, trajectory,velocity,and acceleration of bed load particles under the three conditions were observed and analyzed.Results showed that the bed load movement was highly associated with streambed condition.With well-developed structures,bed load particles moved intermittently through saltation and the bed load transport rate was very low.For partially-developed structures most bed load particles moved through saltation but a portion of sediment moved in sliding and rolling.In the case with no streambed structure(plane bed) contact load motion(sliding and rolling) gradually became dominant.Moreover,laminated load motion occurred and became the main component of bed load transport when the flow discharge and incoming sediment load were very high.Laminated load motion was a special form of bed load motion with an extremely high intensity.Bed load transport and streambed structure both acted to dissipate flow energy and were mutually constraining.High rates of bed load transport occurred in the streams with no or poor bed structures,and low bed load transport was associated with well developed structures.The bed load transport rate was inversely correlated to the degree of streambed development.  相似文献   

11.
Evolution of bed material mobility and bedload grain size distributions under a range of discharges is rarely observed in braiding gravel-bed rivers. Yet, the changing of bedload grain size distributions with discharge is expected to be different from laterally-stable, threshold, channels on which most gravel bedload theory and observation are based. Here, simultaneous observations of flow, bedload transport rate, and morphological change were made in a physical model of a gravel-bed braided river to document the evolution of grain size distributions and bed mobility over three experimental event hydrographs. Bedload transport rate and grain size distributions were measured from bedload samples collected in sediment baskets. Morphological change was mapped with high-resolution (~1 mm precision) digital elevation models generated from close-range digital photogrammetry. Bedload transport rates were extremely low below a discharge equivalent to ~50% of the channel-forming discharge (dimensionless stream power ~70). Fractional transport rates and plots of grain size distributions indicate that the bed experienced partial mobility at low discharge when the coarsest grains on the bed were immobile, weak selective mobility at higher discharge, and occasionally near-equal mobility at peak channel-forming discharge. The transition to selective mobility and increased bedload transport rates coincided with the lower threshold for morphological change measured by the morphological active depth and active width. Below this threshold discharge, active depths were of the order of D90 and active widths were narrow (< 3% of wetted width). Above this discharge, both increased so that at channel-forming discharge, the active depth had a local maximum of 9D90 while active width was up to 20% of wetted width. The modelled rivers approached equal mobility when rates of morphological change were greatest. Therefore, changes in the morphological active layer with discharge are directly connected to the conditions of bed mobility, and strongly correlated with bedload transport rate. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
It is important to evaluate bedload discharge and temporal changes of the bed surface, and bed deformation can be estimated during floods if the bedload discharge is properly evaluated in an arbitrary cross‐section. With the exception of grain size and its distribution within the bedload, bedload discharge has been measured using both direct and indirect methods. Bedload slot is a direct method but cannot be used to measure bedload during a flood because of volume limitations. Indirect methods require correlation between the signals and sediment volume measured using another method. In the present study, a small, automatically recording bedload sensor with an iron plate and a pair of load cells is developed in order to evaluate not only large particles but also sand particles as bedload. Bedload mass is calculated by integrating with respect to both the velocity of sediment particles and the averaged particle weight as measured by a pair of load cells, and, as an example, the velocity is estimated by the cross‐correlation function of weights measured by load cells. The applicability of the proposed sensor is discussed based on the results of flume tests in the laboratory (2014) and the observation flume of the Hodaka Sedimentation Observatory of Kyoto University in Japan (2015). The system was installed in the observation flume in November of 2012, and flume data were obtained using natural sediment particles. In particular, it was difficult to estimate the velocity of averaged bedload particles, and it was better to apply a cross‐correlation function in the laboratory tests. However, it appears that the previous estimation can estimate these velocities in the observation flume using a connecting tube and submerged load‐cell systems. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, the coherent structure in near bed bursting events over the ripples and mechanism of sediment bed load transport were investigated experimentally. The experiments in this study were carried out in the laboratory flume, in two parts; fixed bed ripple and mobile bed ripple. Tow artificial ripples, were built and used for making both fixed and mobile bed. For the fixed bed part, velocity fluctuations were measured using an Acoustic Doppler Velocimeter. In order to apply bursting analysis for obtained data, a computer program was written in visual basic language. Then, variation of turbulence shear stress associated with different bed form geometries was determined and mechanism of sediment transport by ripple shape at the bed of open channel was investigated. For the mobile bed part, artificial ripples were used as mould to make ripples. An image processing technique was used to record amount of sediment particles which are entrained and deposited over the same selected points at the fixed bed part. Results of mobile bed part, confirmed the results of shear stress analysis of fixed bed part.  相似文献   

14.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The high dynamism and complexity of braided networks poses a series of open questions, significant for river restoration and management. The present work is aimed at the characterization of the morphology of braided streams, in order to assess whether the system reaches a steady state under constant flow conditions and, in that case, to determine how it can be described and on which parameters it depends. A series of 14 experimental runs were performed in a laboratory physical model with uniform sand, varying the discharge and the longitudinal slope. Planimetric and altimetric configurations were monitored in order to assess the occurrence of a steady state. A set of parameters was considered, such as the braid‐plain width and the number and typology of branches and nodes. Results point out that a relationship exists between braiding morphology and two dimensionless parameters, related to total water discharge and stream power. We found that network complexity increases at higher values of water discharge and a larger portion of branches exhibits morphological activity. Results are then compared to the outputs of a simple one‐dimensional model, that allows to easily predict the average network complexity, once the bed topography is known. Model computations permit also the investigation of the effect of water discharge variations and to compare different width definitions. The at‐a‐station variability of planimetric parameters shows a peculiar behaviour, both regarding number of branches and wetted width. In particular, the analysis of the relationship between width and discharge highlighted relevant differences in comparison to single thread channel. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
We have shown in a previous paper that many of the main features of braided streams can be captured in a relatively simple cellular computer model. Here we examine some of the detailed characteristics of this model. We show the qualitative form of the braiding produced by the model is generally insensitive to changes in most of the numerical parameters used in the model. The most crucial parameter choice is the use of a non-linear exponent (>1) to describe the relation between sediment flux and local stream power. Use of water discharge instead of stream power to parameterize sediment flux produces braiding, but also unrealistically high-amplitude topography variations in the long term. Introduction of a threshold transport condition causes no noticeable change in the model's behaviour. Inclusion of lateral sediment transport due to gravitational effects on lateral slopes is not crucial to produce braiding, but is needed to provide reasonable lateral channel shifting, and to maintain a continuing dynamic behaviour. As long as lateral sediment transport is included, altering the initial topography for a run has no effect, other than a transient period of regrading. In addition, we show that there is a simple and apparently fundamental connection between braided-stream channel networks and erosional (dendritic) networks that has not been previously recognized. All that is needed to switch the model from braided to dendritic patterns is either to remove redeposition from the rules, simulating entrainment of cohesive sediment, or to add a cliff to the initial topography, making local redeposition unimportant. This result suggests that the presence or absence of significant local redeposition, which causes bar formation, channel division, and avulsion, determines whether a braided or dendritic pattern will form. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Surveys of wood along 30 forested headwater stream reaches in La Selva Biological Station in north‐eastern Costa Rica represent the first systematic data reported on wood loads in neotropical streams. For streams with drainage areas of 0·1–8·5 km2 and gradients of 0·2–8%, wood load ranged from 3 to 34·7 m3 wood/100 m channel and 41–612 m3 wood/ha channel. These values are within the range reported for temperate streams. The variables wood diameter/flow depth, stream power, the presence of backflooding, and channel width/depth are consistently selected as significant predictors by statistical models for wood load. These variables explain half to two‐thirds of the variability in wood load. These results, along with the spatial distribution of wood with respect to the thalweg, suggest that transport processes exert a greater influence on wood loads than recruitment processes. Wood appears to be more geomorphically effective in altering bed elevations in gravel‐bed reaches than in reaches with coarser or finer substrate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Understanding bedload transport fluctuations in rivers is crucial for complementing the existing knowledge on sediment transport theory. In this contribution, we use a natural-scale laboratory flume to analyse bedload transport fluctuations in non-uniform sand under normal flow conditions. Based on the significance of downward seepage, we incorporate the seepage effect on bedload transport over a non-uniform sand bed channel. The weight of the dry material was measured, and the volumetric transport rate per unit width (bedload transport rate) was estimated. An important observation is that the bedload transport rate initially rapidly increases with time and reaches a maximum value. Based on experimental data, we propose an empirical expression to estimate temporal bedload transport. In addition, an empirical model for bedload transport is proposed by incorporating downward seepage among other variables. The performance of several existing bedload transport formulae was also taken into account by the experimental datasets.  相似文献   

19.
Sediment loads have been measured in six Swiss mountain torrents over several decades. Most of these torrent catchments are situated in the prealpine belt. They have catchment areas of between 0·5 and 1·7 km2. Bedslopes at the measuring sites vary between 5 and 17 per cent, and peak discharges up to 12 m3 s−1 have been recorded. Geophone sensors installed in the Erlenbach stream allow bedload transport activity to be monitored and sediment volumes associated with each flood event to be determined. A detailed analysis of the measurements in this stream results in an empirical equation in which the sediment load per flood event is expressed as a function of the effective runoff volume (discharges above the threshold for bedload motion) and of the normalized peak discharge. For the total of 143 investigated flood events in the Erlenbach stream, the deviation of the predicted from the measured value is within a factor of two for more than two-thirds of all events. A distinction can be made between summer and winter events in analysing the bedload transport events. The summer events, mainly caused by thunderstorms, transport comparatively larger sediment loads than the winter events. For the other investigated streams, the periods of the deposited sediment volume surveys cover in general several flood events. An analysis is performed analogous to that for the Erlenbach stream. The sediment loads show a similar dependency on the two factors effective runoff volume and normalized peak discharge. However, the exponents of these factors in the power law expressions differ from stream to stream. A comparison of the investigated stream shows that some of the variation can be explained by considering the bedslope above the measuring site. The inclusion of a bedslope factor is in agreement with laboratory investigations on bedload transport. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Hydraulic modelling principles, together with a knowledge of channel pattern thresholds, allow the development of a small scale model of a gravel braided stream with flow characteristics and equivalent dimensions of a natural river. The forms and processes of natural gravel braided rivers are reproduced by imposing a constant flume discharge and slope, and maintaining approximate equilibrium with an adjustable sediment feed. Beginning from a straight trough, braiding is initiated by development of a series of alternating bars and scour pools which produce bends of increasing amplitude, leading finally to channel division. These lobate bars accrete downstream by deposition of bed material at their margins, often in the form of avalanche faces. Together with the scour pools with which they are necessarily closely associated, these bars are the fundamental elements of the channel pattern. Channel migration and division is a response to the development of bars, and these adjustments leave portions of the originally active bars in the form of exposed and eroded remnants. Complex flats built from these lobate forms show varying degrees of preservation of the original depositional units, but the model allows observation of the systematic construction of some flats. Sorting of sediment on active bars with avalanche faces shows a distinct fining downstream. This may be the result of the accretion of fining upwards avalanche faces along the bar margins rather than a ‘winnowing out’ of fine material. The processes and forms observed in the model appear to be very similar to those occurring in natural gravel braided streams during peak flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号