首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although a number of studies of the variation of soil transport with increase in slope angle have appeared, few include an information on the interaction of sheetwash and rainsplash on high slope angles, which is necessary to test Horton's proposed polynomial relationship. Virtually no studies are available which compare the influence of changes in soil type or antecedent moisture on established relationships. This paper reports the testing of eight soils from Alberta, Canada, under simulated rainfall on ten slopes from 3° to 30°. Material eroded was separated into that transported by rainsplash and that by sheetwash. In general, it was found that the influence of changes in slope angle on soil transport is best described by polynomial relationships, but these are shown to vary considerably between rainspash and sheetwash, between different soil types and for different antecedent moisture conditions. Despite careful control of all factors other than slope angle very high variability of results was experienced. Causes of variability are examined and the need for evaluation of the effect of test plot size on variability of results is suggested.  相似文献   

2.
This paper investigates the spatial and temporal variations of runoff, erosion and rate of sediment transport on an agricultural field submitted to natural rainfalls. The site, located in the Eastern Townships (Québec, Canada), is a corn field (10000 m2) where sheetwash erosion is active. Water (Q) and sediment (Qs) discharges were measured from June to October at eight locations on the field and for ten rainfall events. Analysis of the data was carried out on an aggregate data set and on the distributed measurements in time and space. The results showed that changes in vegetation, soil compaction and crusting are critical in determining temporal variations of runoff and erosion. Until August, the increase in soil compaction reduced infiltration capacity and depression storage and generated greater runoff for a given rainfall intensity (I). Sediment transport decreased as particle detachment is less likely to occur when vegetation breaks the drop impact and the soil surface is sealed. Later in the season, we observed an increase in sediment concentration associated with the presence of burrowing insects and harvest activity, providing loose sediments to the broken down surface. Intercepts and slopes of the relationship between Q and Qs also vary during the period of measurement. High sediment availability over the soil surface in June and October gives high intercept values. The slope of the relationship is more stable but difficult to estimate for extreme events (high values of I or low Q values) where the number of sampled points are small. During a rainfall, the response of the field is dominated by the topography and drainage area. The largest amount of runoff and erosion occurred on straight and steep slopes with small drainage areas, and on converging gentle slopes with large drainage areas. Although aggregate runoff and erosion values are decreasing with drainage area, parameters of the Qs-Q relationship for different locations on the field are not statistically different. These results bear important consequences for models of sheetwash erosion on agricultural fields.  相似文献   

3.
Repeated measurement of tephra erosion near Mount St. Helens over a 30-year period at steel stakes, installed on 10 hillslopes in the months following the 1980 eruption, provides a unique long-term record of changing processes, controls and rates of erosion. Intensive monitoring in the first three post-eruption years showed erosion declined rapidly as processes shifted from sheetwash and rilling to rainsplash. To test predictions about changes to long-term rates and processes made based on the 3-year record, we remeasured sites in 1992, 2000 and 2010. Average annual erosion from 1983 to 1992 averaged 3.1 mm year−1 and ranged from 1.4 to 5.9 mm year−1, with the highest rate on moderately steep slopes. Stakes in rills in 1983 generally recorded deposition as the rills became rounded, filled and indistinct by 1992, indicating a continued shift in process dominance to rainsplash, frost action and bioturbation. Recovering plants, where present, also slowed erosion. However, in the second and third decades even unvegetated hillslopes ceased recording net measurable erosion; physical processes had stabilized surfaces from sheetwash and rill erosion in the first few years, and they appear to have later stabilized surfaces against rainsplash erosion in the following few decades. Comparison of erosion rates with suspended sediment flux indicates that within about 6 years post-eruption, suspended sediment yield from tephra-covered slopes was indistinguishable from that in forested basins. Thirty years after its deposition, on moderate and gentle hillslopes, most tephra remained; in well-vegetated areas, plant litter accumulated and soil developed, and where the surface remained barren, bioturbation and rainsplash redistributed and mixed tephra. These findings extend our understanding from shorter-term studies of the evolution of erosion processes on freshly created substrate, confirm earlier predictions about temporal changes to tephra erosion following eruptions, and provide insight into the conditions under which tephra layers are preserved. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd.  相似文献   

4.
The 1980 eruption of Mount St. Helens covered soils with a tephra blanket and killed the forest tree cover in a 550 km2 area. After the eruption, rates of sheetwash and rill erosion, and plant cover were measured on tephra-covered hillslopes which had been subject to three land-management practices: grass seeding; scarification, and salvage logging. On rapidly-eroding hillslopes subject to grass seeding, limited plant covers were established only after erosion had declined sharply. Logging of trees downed by the eruption and scarification of previously logged surfaces slowed erosion, although the effect was small because erosion rates had already slowed substantially by the time these two practices were implemented. The factors controlling erosion, revegetation, and their relative timing at Mount St. Helens are similar to those following explosive volcanic eruptions elsewhere, suggesting that grass seeding is not likely to be effective at slowing erosion following most tephra eruptions, and that early mechanical disturbance could be an effective erosion-control measure. The results also indicate that even without deliberate conservation measures, processes which mechanically disturb a surface layer of low hydraulic conductivity (such as frost-action or trampling) can radically reduce runoff and erosion before revegetation has an important effect.  相似文献   

5.
We quantify erosion rates in the higher sectors of the Huasco Valley, in the Main Cordillera of the semi‐arid Andes of Chile, using elevation differences between three successive geomorphic markers (pediments and paleo‐valleys) and the present day valley. Available Ar‐Ar ages of Neogene pediments are used to estimate mean erosion rates for the three periods (16 to 13 My, 13 to 8 My, and following 8 My). The landscape of the Huasco Valley is in a transient state, as indicated by well‐preserved pediment surfaces in interfluves, valleys deeply incised by fluvial and glacial erosion and scarped head‐valleys that represent the current knickzones. Higher erosion rates (45–75 m/My) are calculated for the more recent period (< 8 My) during which deep incision developed compared to previous periods (6–31 m/My). Quantitative data indicate that glaciers had a much higher erosional capability than fluvial activity in the higher sectors of the Main Cordillera. Comparison with erosion rates calculated in other drainage basins of the Chilean Andes suggests that the variability of erosion rates depends on the landscape's transient erosive state. The landscape's geomorphologic response to the uplift of the Main Cordillera results in the retreat of a knickzone, for which retreat velocity depends on precipitation rate pattern and glacial erosion intensity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Comparative erosion rates provide a rational basis for evaluating reclamation success because the work performed by erosion processes is a function of both forces and resistances operating on a surface. Sheetwash erosion data collected by the LEMI technique over several years at the Dave Johnston Mine in east-central Wyoming show that, based upon average values, there is generally little difference between the erosion rates of natural and reclaimed hillslopes at this locale. Therefore, it is permissible to infer that the reclamation programme has been successful from a geomorphic perspective. However, there is considerable variation in erosion rates about the average for individual hillslopes in both the natural and reclaimed groups. Examination of these data by hillslope element and segment show that, based upon average values, the concave elements of natural and reclaimed hillslopes experience the highest rate of sheetwash erosion. Again, however, there is considerable variation about the average and considerable erosion can occur in any element or segment of particular hillslopes. Lastly, there are seasonal oscillations of hillslope surface elevation with frost-heaving prevalent during the late autumn to early spring months and erosion prevalent during the late spring to early autumn months.  相似文献   

7.
Soil erosion in New Zealand exports much sediment and particulate organic carbon (POC) to the sea. The influence of this carbon export on carbon transfers between soils and the atmosphere has been largely unknown. Erosion models are used to estimate the net carbon transfer between soils and atmosphere due to soil erosion for New Zealand. The models are used to estimate the spatial distribution of erosion, which is combined with a digital map of soil organic carbon content to produce the spatial distribution of carbon erosion. The sequestration of atmospheric CO2 by regenerating soils is estimated by combining carbon recovery data with the age distribution of soils since erosion occurrence. The North Island of New Zealand is estimated to export 1·9 (with uncertainty of ?0·5 and +1·0) million tonnes of POC per year to the sea and to sequester 1·25 (?0·3 /+0·6) million tonnes of carbon per year from the atmosphere through regenerating soils. The South Island of New Zealand is estimated to export 2·9 (?0·7/+1·5) million tonnes of POC per year and to sequester approximately the same amount. Assuming exported carbon is buried at sea with an efficiency of 80% gives New Zealand a net carbon sink of 3·1 (?2·0/+2·5) million tonnes per year; which is equivalent to 45% of New Zealand's fossil fuel carbon emissions in 1990. The net sink primarily results from a conveyor belt transfer of carbon from the atmosphere to soils regenerating from erosion to the sea floor where carbon is permanently buried. The net sink due to soil erosion can be further increased by reforestation of those terrains where erosion is excessive and there is no carbon recovery in the soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses.  相似文献   

9.
Erosion rates and processes define how mountainous landscapes evolve. This study determines the range of erosion rates in a semi‐arid landscape over decadal time spans and defines the dominant processes controlling variability in erosion rates. The varying topography and climatic regimes of the Xiying Basin (Qilian Shan Mountains, China) enables us to examine the relative roles of sheet wash versus rainsplash and the influence of vegetation on soil erosion and deposition. Soil erosion rates since 1954 were determined using 137Cs along 21 transects at four sites with varying gradient, rainfall, and vegetation cover. The mean 137Cs derived soil erosion rate ~0.42 mm/a was consistent with the catchment level erosion rate derived from total sediment yield for a 44 year record. However, there is considerable variability in 137Cs erosion rates both between transects and along transects, perhaps reflecting variation not only in the effectiveness of individual processes but also in their relative roles. We compare the 137Cs‐derived erosion rates with 1‐D models for sediment flux that incorporate sheet wash and rainsplash processes, testing them over a previously untested 60 year timescale. The variability in 137Cs erosion rates along transects is best replicated by sheet wash dominated simulations, suggesting that this is the dominant erosion process in this semi‐arid landscape. The functional form of the sheetwash model can also explain our observations that 137Cs erosion rates decrease with upslope length (i.e. distance down slope) while its variability increases. However, sparsely vegetated sites, located in slightly drier locations, have higher erosion rates, and are not as accurately modeled as densely vegetated sites, suggesting that patchiness of vegetation introduces fine scale variability in erosion rates on these slopes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Stone forest (‘Shilin’ in Chinese) is a unique karst landform with a complex evolution process. Based mainly on the characteristics and interrelationships of sub‐soil, soil and sub‐aerial erosion in Lunan karst area, the authors develop a triplex erosion model to describe the evolution of stone forest, and apply it to examine the current development stage and the prospect of the Lunan Stone Forest. The study shows that sub‐soil corrosion, a basic driving force for the vertical scope of a stone forest, usually occurs within 10 m below ground surface but is observed to be most active within the top 2 m, which constitutes the best development zone for stone forest. Under modern climatic conditions, the tip of the stone pillars in Lunan karst area is lowering at a rate of 10·4 mm ka?1, whereas the base of the stone pillars is deepening at 26·17 mm ka?1. Therefore, the height of stone pillars is increasing at a rate of 15·77 mm ka?1. Considering that soil erosion in the study area is as high as 650 mm ka?1, the visible height of the stone forest is actually increasing at a rate of 639·6 mm ka?1. However, the best evolution time for Lunan Stone Forest has already passed despite the fact that it is still growing taller at the present time. This is because the soil layer, which plays an extremely significant role in the heightening of stone pillars, is rapidly thinning at a rate of 623·83 mm ka?1. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

12.
Deposits of late‐Holocene beach sand buried conifer forests episodically emerge on beaches of the Oregon coast. Simultaneously, sand dunes buried late‐Holocene forests growing on marine terraces landward of the beaches. Dune ramps, up to 60 m in elevation, connected the beach and dune deposits. The average age of wood samples from stumps rooted on the shore platforms is 3·07 ± 1·45 ka. The average age of wood and charcoal samples embedded in forest soil on the marine terraces is 3·27 ± 1·46 ka. Between 1994 and 2006, winter storm waves exposed more than 4·5 km2 of late‐Holocene forest soil on shore platforms at 19 localities. Rooted stumps without soil were uncovered at an additional 14 localities. Once exposed, wave action eroded the soil rapidly (one to two years). The intact forest soil and roots on the shore platforms must have been nearly continuously buried, protected and preserved prior to recent exposure. The late‐Holocene buried forest provides the basis for a conceptual model of coastal evolution. A three stage reversal of erosion and sand supply must have occurred: (1) wave erosion switched to seaward advancement of forests, (2) forest growth and soil development switched to burial beneath beach and dune sand and (3) burial and preservation switched to wave erosion, truncation of dune ramps and landward retreat of sea cliffs. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Elucidation of the fluvial processes influenced by dams provides better understanding of river protection and basin management. However, less attention has been given to the erosion intensity distribution of riverbeds and its association with channel morphology and hydrological conditions. Based on hydrological and topographic data, the spatial and temporal distributions of erosion intensity (2002–2014) influenced by the Three Gorges Dam (TGD) were analyzed for the Jingjiang reach of the Yangtze River. The mechanisms underlying the distribution of erosion intensity in response to hydrological conditions were investigated. The results are as follows: (1) The erosion intensities of different discharges were not uniform, and moderate flow (10 000–27 000 m3/s) produced the largest erosion magnitude among all flow ranges. Owing to the hydrological changes caused by flood reduction and prolongation of moderate flow duration after the TGD began operating, up to 70% of the erosion amount was caused by moderate flows. (2) The lateral distribution of erosion intensity was extremely uneven, as the proportion of cumulative erosion of the low‐flow channel within the bankfull channel reached 88% in 2013. This caused the channel to become narrower and deeper. (3) The longitudinal distribution of erosion intensity was inhomogeneous. The erosion intensity in the wide reaches was greater than that in the narrow reaches, leading to smaller differences in channel morphology along the river. (4) Changes in hydrological conditions influenced by the TGD, significant reduction of sediment concentration along with flood abatement, and increased duration of moderate flow discharges were the main factors affecting erosion distribution in the post‐dam period. Our conclusions can be applied to the Yangtze River as a basis for riverbed change estimations, and river management strategies. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
The relation in which the vertical and horizontal gradients of potential field data measured along a profile across a two‐dimensional source are a Hilbert transform pair is re‐established using complex domain mathematics. In addition, a relation between the measured field and its vertical gradient in terms of a closed‐form formula is also established. The formula is based on hypersingular or Hadamard's finite‐part integral. To estimate the vertical gradient directly from the field data, Linz's algorithm of computing Hadamard's finite‐part integral is implemented. Numerical experiments are conducted on synthetically generated total magnetic intensity data with a mild level of noise contamination. A model of a magnetically polarised vertical thin sheet buried at a finite depth within a non‐magnetic half‐space was considered in generating the synthetic response. The results from numerical experiments on the mildly noise‐contaminated synthetic response are compared with those from using classical Fourier and robust regularised Hilbert transform‐based techniques.  相似文献   

15.
The sandstone peak‐forest landscape in Zhangjiajie UNESCO Global Geopark of Hunan Province, China, is characterized by >3000 vertical pillars and peak walls of up to 350 m height, representing a spectacular example of sandstone landform variety. Few studies have addressed the mechanisms and timescales of the longer‐term evolution of this landscape, and have focused on fluvial incision. We use in situ cosmogenic nuclides combined with GIS analysis to investigate the erosional processes contributing to the formation of pillars and peak‐forests, and discuss their relative roles in the formation and decay of the landscape. Model maximum‐limiting bedrock erosion rates are the highest along the narrow fluvial channels and valleys at the base of the sandstone pillars (~83–122 mm kyr?1), and lowest on the peak wall tops (~2.5 mm kyr?1). Erosion rates are highly variable and intermediate along vertical sandstone peak walls and pillars (~30 to 84 mm kyr?1). Catchment‐wide denudation rates from river sediment vary between ~26 and 96 mm kyr?1 and are generally consistent with vertical wall retreat rates. This highlights the importance of wall retreat for overall erosion in the sandstone peak‐forest. In combination with GIS‐derived erosional volumes, our results suggest that the peak‐forest formation in Zhangjiajie commenced in the Pliocene, and that the general evolution of the landscape followed our sequential refined model: (i) slow lowering rates following initial uplift; (ii) fast plateau dissection by headward knickpoint propagation along joints and faults followed by; (iii) increasing contribution of wall retreat in the well‐developed pillars and peak‐forests and a gradual decrease in overall denudation rates, leading to; (iv) the final consumption of pillars and peak‐forests. Our study provides an approach for quantifying the complex interplay between multiple geomorphic processes as required to assess the evolutionary pathways of other sandstone peak‐forest landscapes across the globe. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
Measurements of rainfall, runoff and sediment export from a barren deposit of coal mine refuse in south-western Indiana were collected during three storms in the summer and autumn of 1990. Interfluve sheetwash, sediment mass flux, sediment concentration and, to a lesser extent, trunk gully discharge all responded quickly to changes in rainfall intensity. Grain-size distributions varied considerably during storms, containing exclusively fine-grained sediment at low sediment discharges but very large quantities of coarse (> 2mm) sediment at peak sediment discharges. Although data from a fairly long, multipulsed storm indicate that sediment production is limited by supply, the imbricated layer of flat chips that exists at the surface of the deposit is apparently mobilized during most high-intensity pulses of rainfall, thereby producing large volumes of coarse sediment during summer thunderstorms.  相似文献   

17.
In gully erosion, the detached soil can be transported over long distances along the landscape. The eroded material can be redistributed and/or deposited on the soil surface along the landscape and then eventually be buried by newly eroded and deposited sediment. There can be significant variability of the soil conditions (e.g., texture and moisture content) over which the eroded material travels. The eroded material can be detected through the use of magnetic tracers attached to or mixed with the eroded soil. In this study we evaluated the degree to which the magnetic signal of the magnetite is conditioned by (i) burial depth of tracer, (ii) condition of soil covering the tracer and (iii) tracer concentration. In the laboratory containers were filled with a specific soil. In the filling process, a 0.5-cm layer of a soil–magnetite mixture was interspersed in the soil profile at a certain depth. Experiments encompassed three different soil–tracer concentrations (1000:1, 200:1, 100:1), four burial depths of tracer (0 cm, 3 cm, 5 cm and 10 cm from soil surface), and two different soils. In each case, the magnetic susceptibility was measured with a susceptometer. Experiments were repeated with different soil moisture contents. If the tracer is located under the soil surface, a minimum soil–tracer concentration of 200:1 is required for its correct detection. The intensity of the magnetic signal decreases dramatically with the vertical distance of the tracer from the soil surface. The maximum detection depth for the tracer's magnetic signal is strongly dependent on the natural magnetic susceptibility of the soil, which masks the tracer's signal. Variation in soil moisture content does not significantly affect the magnetic signal. For extensive field studies, the soil–tracer volume to be handled would be very high and therefore, it is necessary to explore new tracer application techniques.  相似文献   

18.
The presence of Cenozoic deposits along the Norwegian Atlantic margin required extensive erosion of the Scandinavian Mountains in a generally cooling climate from the Oligocene to the present. The volume of the deposits implies that the transfer of mass from the inland area to the offshore shelf induced isostatic displacements on a kilometer scale. However, except for glacial excavation of the deep fjords, little is known about the distribution of Cenozoic inland erosion. A long-lasting paradigm incorporates remnants of peneplains at high elevation and assumes very little Cenozoic erosion on these surfaces through time. This scenario has recently been challenged by quantitative geomorphological studies indicating that the matrix of Cenozoic sediments deposited offshore must have been sourced from these surfaces. An alternative explanation for the present-day high-elevation low-relief surfaces is therefore that they evolved throughout the Cenozoic because of glacial and periglacial erosion processes that are known to vary strongly with altitude. Here we explore the implications of the latter scenario by reconstructing a pre-Cenozoic fluvial landscape without elevated low-relief surfaces. We use the present-day offshore sediment volumes for constraining the total Cenozoic erosion, and we find that a likely pre-Cenozoic fluvial landscape is only in few places more than 1 km higher than today. The rock mass of the offshore sediments is generally used for filling the fjords created during the Quaternary glaciations and for restoring concave river profiles from sea level to the peaks. Our reconstruction is based on a fluvial landscape algorithm and considers the isostatic response to the transfer of rock mass – from the basins onto the onshore area. A comparison between the reconstructed and the present-day topography demonstrates that offshore tilting of pre-Cenozoic strata can be partly explained by flexural isostatic compensation in response to the Cenozoic erosion and deposition. Locations of future thermochronometry studies for testing Scandinavian landscape evolution models are suggested based on temperature estimates of the present-day surface buried beneath the erosion products restored from the offshore basins.  相似文献   

19.
In semi‐arid areas, high‐intensity rainfall events are often held responsible for the main part of soil erosion. Long‐term landscape evolution models usually use average annual rainfall as input, making the evaluation of single events impossible. Event‐based soil erosion models are better suited for this purpose but cannot be used to simulate longer timescales and are usually applied to plots or small catchments. In this study, the openLISEM event‐based erosion model was applied to the medium‐sized (~50 km2) Prado catchment in SE Spain. Our aim was to (i) test the model's performance for medium‐sized catchments, (ii) test the ability to simulate four selected typical Mediterranean rainfall events of different magnitude and (iii) explore the relative contribution of these different storms to soil erosion using scenarios of future climate variability. Results show that because of large differences in the hydrologic response between storms of different magnitudes, each event needed to be calibrated separately. The relation between rainfall event characteristics and the calibration factors might help in determining optimal calibration values if event characteristics are known. Calibration of the model features some drawbacks for large catchments due to spatial variability in Ksat values. Scenario calculations show that although ~50% of soil erosion occurs as a result of high frequency, low‐intensity rainfall events, large‐magnitude, low‐frequency events potentially contribute significantly to total soil erosion. The results illustrate the need to incorporate temporal variability in rainfall magnitude–frequency distributions in landscape evolution models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Interstitial water samples from the Guatemala Basin and the coast of Baja California have been analyzed for manganese, iron, copper, nickel and nitrate. The data provide a systematic look at changes in trace metal diagenesis proceeding from red clay to highly reducing nearshore sediments.In red clay sediments, the nitrate concentrations suggest that only aerobic respiration is occurring. Manganese and iron are below detection. Nickel concentrations remain the same as in bottom seawater but copper shows a pronounced maximum just at the sediment/water interface. Proceeding to hemipelagic sediments, denitrification becomes increasingly important and manganese and iron remobilization occur in the sediments.The linear manganese and nitrate profiles suggest regions of production or consumption separated by zones of diffusion. This differs from the conventional picture of a continuous series of reactions within the sediments. Manganese reduction always occurs before iron reduction. The pore water nickel correlates well with manganese in these sediments, suggesting that nickel is associated with MnO2 in the solid phase. The pore water flux ratio of manganese and nickel agrees well with the ratio in solid phase authigenic oxides. Copper still displays a core top concentration maximum as well as a second maximum associated with the remobilized manganese. The calculated ratio of the Cu/C flux ratios support the argument for copper remobilization during organic carbon oxidation. Comparison of the upward and downward diffusive fluxes with the rate of copper buried by sedimentation shows that at least half of the copper buried must be of diagenetic origin and less than 25% of the copper reaching the sediments is buried.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号