首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Qinghai Lake, on the northeastern Qinghai-Tibetan Plateau, is the largest extant closed-basin lake in China, and has been the subject of numerous palaeoclimatological and palaeoenvironmental studies. In this study, 32 samples of aeolian sand, loess and palaeosol at six sites, and 1 sample of shoreline deposits underlying aeolian deposits were dated using optically stimulated luminescence (OSL). Where available, OSL ages are in agreement with previously published 14C ages. Our dating results, in combination with previous published ages on aeolian deposits showed that: (1) The oldest aeolian deposits around Qinghai Lake are in excess of 165 ka. (2) Aeolian deposition then began at ∼14 ka in the Qinghai Lake area. Periods of palaeosol formation occurred at ∼16.9 ka, ∼12.2–11 ka, ∼10–9 ka, ∼5.2–4 ka, and ∼3.9–0.7 ka. (3) The accumulation intervals of palaeosols are generally consistent with drilling-core-based environmental change proxies, indicating that palaeosols were formed during wet periods with higher vegetation cover. (4) A depositional hiatus period of ∼40–50 ka exists between the surface mantle aeolian deposits and underlying gravel deposits. (5) Lake levels during the Holocene did not exceed 3205.2 m elevation (11.8 m above recent lake level of April, 2010).  相似文献   

2.
Chinese loess–palaeosol sequences are well known for their records of monsoonal climatic variations. However, the modern processes of dust accumulation and soil formation remain poorly understood. A high‐resolution investigation on modern soils, including the measurement of magnetic susceptibility, particle‐size distribution, total Fe, total organic carbon, CaCO3 content, and optical stimulated luminescence (OSL) dating was carried out on the Zhouyuan loess tableland in the southern Loess Plateau. The results indicate that modern cinnamon soils (luvisols) have developed on contemporarily accumulated aeolian dust during the Holocene. The aeolian loess accumulated during the Younger Dryas was identi?ed in the top part of the Malan Loess that underlay the modern soil by OSL dating and proxy climatic data. It indicates that the Malan Loess accumulated during the last glaciation (marine isotope stages 2–4) does not serve as the parent material for the modern soils. Pedogenesis of the soils started with the increased precipitation and soil moisture that have occurred on the loess tableland since the early Holocene. Precipitation‐driven pedogenesis and organic activities are responsible for the leaching of CaCO3, decomposition of mineral dust and the production of clay and ferromagnetic minerals. Drier intervals have interrupted soil formation several times, and therefore pro?les with multiple soils have been developed at many sites on the loess tableland. At places where soil erosion was relatively strong, either a single soil or welded soils are preserved in the Holocene pro?les. This does not necessarily mean, however, that modern soils over the plateau have been developed without interruption under a constantly warmer, moister climate. This is signi?cant for understanding the surface processes and climatic variation during the formation of the numerous palaeosols over the Loess Plateau in the Quaternary. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The magnetic susceptibility (MS) of Chinese loess showing a general proportional relationship to pedogenic grade has been widely recognized and used for reconstruction of paleoclimate by Quaternary scientists. The in-situ pedogenic enhancement of ferrimagnetic content is normally believed to be the main reason for the increase of susceptibility in soil units. However, this pattern of high magnetic susceptibility in palaeosols, and low values in loess, are not replicated in some loess deposits. Siberian loess deposits display a completely opposite susceptibility behavior: high values in loess and low values in palaeosols. This inverse relationship has been explained by the idea that magnetic susceptibility is reflecting the magnitude of an aeolian ferrimagnetic component of consistent mineralogy, the grain size of which is related to average wind velocity. Our magnetic study of Siberian samples in this paper suggests that there are notable differences in magnetic properties between Siberian loess and developed palaeosols, not only in magnetic grain-size and concentration but also in magnetic mineralogy. This evidence is difficult to explain fully through variation in wind strength alone, but implies that the low magnetic susceptibility values in the Siberian paleosol units are a reflection, at least in part, of the alteration of the ferrimagnetic content by post-depositional processes. The Loess Plateau is a very arid area where potential evaporation is always higher than precipitation; pedogenesis occurs under dry oxidising conditions. The Siberian Kurtak region is located on the edge of the tundra where it is always wet and saturation during interglacials will lead to a reducing pedogenic environment. Ferrimagnetic minerals under this condition will be destroyed, resulting in lower magnetic susceptibility. Therefore, great care should be taken when using susceptibility values for paleoclimatic reconstruction.  相似文献   

4.
The arguments presented by Lowe et al. [Lowe, D.J., Wilson, C.J.N., Newham, R.M., Hogg, A.G., 2010. Dating the Kawakawa/Oruanui eruption: comment on “optical luminescence dating of a loess section containing a critical tephra marker horizon, SW North Island of New Zealand” by R. Grapes et al. Quaternary Geochronology 5(4), 493–496] against our IRSL results, which suggested that the widespread Kawakawa tephra (KkT) could be considerably younger than the generally accepted 27.1 ka cal BP age, are unsustainable. We discuss the points raised by Lowe et al., in terms of: 1) Presentation and analysis of luminescence ages (comparison between reporting and error margins of luminescence and 14C ages, statistical treatment of age data); 2) Possible sources of error (“upbuilding pedogenesis” and its affect on U and Th distribution in loess, effect of biotubation, variation of K in loess, single grain luminescence dating of quartz, probability of luminescence age underestimation in dating tephra); 3) Stratigraphic and paleoenvironmental considerations (ages of tephras overlying KkT, timing of the end of Ohakea loess deposition and its distribution; 4) Radiocarbon-based ages of KkT (problems with the currently accepted 14C 27.1 ka cal BP age of KkT). We stress that our study was not to establish a new benchmark age for the KkT, but to open debate about the currently accepted benchmark age of the KkT, which we deem to be erroneous.  相似文献   

5.
Low-temperature oxidation under atmospheric conditions affects the magnetic properties of magnetite in natural rocks: the coercivities of magnetite grains increase and other parameters change accordingly. It was recently shown that heating to 150°C largely removes the effects of low-temperature oxidation (van Velzen and Zijderveld, 1995). Heating may therefore serve as a detection tool for the presence of the effect of low-temperature oxidation. In the present study, a collection of loess and paleosol samples from various loess regions of the world is examined for the influence of low-temperature oxidation. In all samples of the collection a decrease of coercivities was found after heating to 150°C. Generally loess samples were affected to a larger extent than paleosol samples. The original range of remanent coercivities(B cr)of 21-58 mT changed to 20-42 mT after heating. The IRM capacity of the samples decreased from 0 up to 25%. ARM showed changes between a decrease of 10% and an increase of 15%. The grain-size indicative parameter IRM/ARM is considerably influenced by the heating and therefore by low-temperature oxidation. The changes in susceptibility are limited and will not influence the interpretation of large-scale features of the susceptibility record as a paleoclimate proxy. Small variations, however, may be obscured by the varying influence of oxidation in the outcrop, which can significantly modify the rock-magnetic record. Rock-magnetic parameters used to determine magnetic mineral content and grain sizes should be corrected for the effect of low-temperature oxidation. To this end heating to 150°C is recommended. The occurrence of the changes is in itself already an indication for the presence of magnetite. Low-temperature oxidation will not only be due to recent weathering in the outcrop, but also to earlier oxidation processes in the source area, during transport and deposition of the loess and during pedogenesis. Truly fresh sediment samples are only influenced by this earlier oxidation. In that case heating will reveal the degree of ancient low-temperature oxidation, which may be related to climate at the time of deposition and pedogenesis.  相似文献   

6.
A detailed rock magnetic investigation of loess/palaeosol samples from the section at Lingtai on the central Chinese Loess Plateau (CLP) is presented. Thermal demagnetisation of isothermal remanent magnetisation (IRM) and Curie temperature measurements suggest the presence of magnetite, maghemite and hematite as remanence carrying components. Bulk and grain size fractionated samples have been analysed using coercivity spectra of remanence acquisition/demagnetisation curves, which identify four main remanence carriers in different grain size fractions of loesses and palaeosols. A linear source mixing model quantifies the contribution of the four components which have been experimentally derived as dominating endmembers in specific grain size fractions. Up to two thirds of the total IRM of the palaeosols are due to slightly oxidised pedogenic magnetite. Two detrital components dominate up to 90% of the IRM of the loess samples and are ascribed to maghemite of different oxidation degree. Detrital hematite is present in all samples and contributes up to 10% of the IRM. The iron content of the grain size fractions gives evidence that iron in pedogenically grown remanence carriers does not originate from the detrital iron oxides, but rather from iron-bearing clays and mafic silicates. The contribution of pedogenic magnetite to the bulk IRM increases with the increasing degree of pedogenesis, which depends in turn on climate change.  相似文献   

7.
Four periods of loess deposition in the Lower Mississippi Valley can be identified on the basis of geochemical and mineralogical criteria, radiocarbon dating, and thermoluminescence dating. These are designated Loess Units 1,2,3, and 4 in order of increasing age. Carbonate-rich Unit 1 loess comprises more than 70 per cent of the thickness of the loess profiles. 14C and TL dates indicate this loess was deposited between 9 000 and 20 000 years ago. A maximum sedimentation rate of 2.17 mm yr?1 has been recorded near Vicksburg just after the last Laurentide glacial maximum, between 17 190 and 15 580 years ago. The Unit 2 loess, which is thin and partly decalcified, was deposited slowly between about 25 000 and 20 000 years ago. The Unit 3 and Unit 4 loess formations, which are both highly weathered, have yielded TL ages of 76 000–85 000 years and 119 000- > 132 000 years, suggesting they were deposited during the Altonian Substage of the early Wisconsinan and the Illinoian glacial stage respectively. The four loess units are stratigraphically equivalent to the Peoria, Farmdale, Roxana, and Loveland loess formations previously recognized in Illinois. The source of dust in both areas was glacial outwash in the Mississippi Valley. During interglacials and interstadials, when the supply of glacial debris was reduced and the Mississippi River changed from a braided to a meandering regime, dust sedimentation in southern Mississippi virtually ceased, allowing weathering and pedogenesis to proceed.  相似文献   

8.
Sediment distribution is investigated applying grain size analysis to 279 surface samples from the transitional zone between high mountains (Qilian Shan) and their arid forelands (Hexi Corridor) in north‐western China. Six main sediment types were classified. Medium scale (103 m) geomorphological setting is carefully considered as it may play an important role concerning sediment supply and availability. A tripartite distribution of sedimentological landscape units along the mountain to foreland transition is evident. Aeolian sediments (e.g. loess and dune sands) are widespread. They are used to identify aeolian transport pathways. The mU/fS‐ratio (5–11 µm/48–70 µm) among primary loess opposes the two grain size fractions being most sensitive to varying accumulation conditions. The first fraction is attributed to long‐distance transport in high suspension clouds whereas the latter represents local transport in saltation mode. The ratio shows strong correlation with elevation (R2 = 0.77). Thus, it indicates a relatively higher far‐traveled dust supply in mountainous areas (>3000 m above sea level [a.s.l.]) compared to the foreland. The contribution of westerlies to high mountain loess deposits is considered likely. Hereby, the influence of the geomorphological setting on grain size composition of aeolian sediments becomes apparent: the contribution from distant dust sources is ubiquitous in the study area. However, the far‐distance contribution may be reduced by the availability of fine sand provided in low topography settings. Plain foreland areas support fine sand deflation from supplying river beds, allowing the formation of sandy loess in foreland areas and intramontane basins. In contrast, high mountain topography inhibits strong sand deflation into loess deposits. Eastern parts of the Hexi Corridor show higher aeolian sand occurrence. In contrast, the western parts are dominated by gravel gobi surfaces. This is attributed to higher sand supply in eastern parts provided by the Badain Jaran Desert and fluvial storages as sand sources. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Monitoring of dust deposition at several stations on Crete over a three year period has shown that the present-day depositional flux is of the order of 10-100 gm−2 yr−1. Most of the dust deposition takes place during a few annual dust [events] which typically last for 1-3 days. Dust haze episodes are usually associated with southerly or southwesterly winds which transport fine sediment from North Africa. Dust is raised by a wide variety of meteorological conditions which generate strong near-surface winds in the source areas, but major long-range transport events are often associated with cold fronts linked to the passage of deep mid-latitude depressions during winter and spring. Dust haze frequency and deposition rates are highest in western Crete and decrease towards the east, suggesting that transport from Tunisia and neighbouring parts of North Africa is particularly important. The measured rate of dust deposition is well below the minimum level required for loess formation. Deposits which have previously been identified as loess are shown to be uncemented marine marls of Tertiary age. Laboratory analysis of red soils, surface sediments, and bedrock samples has confirmed that many of the soils contain an important aeolian dust component, but it is concluded that a more important source of soil parent material is provided by weathering of local rocks. Many of the soils contain significant amounts of quartz sand which cannot have been transported across the sea from North Africa. Reworking of weathered material and deposited dust is extensive, and is accomplished by both aeolian and fluvial processes. Tectonically-controlled depressions in the mountains and parts of the coastal lowlands have acted as long-term sinks in which a thickness of several metres of sediment and soil has accumulated during the Quaternary.  相似文献   

10.
As part of a chronological study of the famous Upper Pleistocene Nussloch (Germany) loess sequence, three samples were collected to check the applicability of palaeodosimetric dating methods (OSL and ESR) to quartz grains. The ESR-multicentre method showed a partial bleaching of the ESR centers in aeolian sands. This partial bleaching was also observed by OSL. Laminated loess seemed to be sufficiently bleached but showed a large scatter of the doses, which we ascribed to heterogeneous responses of the luminescent grains to the SAR protocol. Ages could nevertheless be calculated for the three samples and were found to be somewhat older than the IRSL and 14C ages obtained for the same layers of the laminated loess.  相似文献   

11.
We have conducted detailed rock magnetic experiments on samples from loess unit 8 (L8) and paleosol unit 8 (S8) in Jingbian, Yichuan and Duanjiapo loess sections along an N-S transect in the Chinese Loess Plateau. Major rock magnetic results are as follows: (i) An increase of high field susceptibility (χh) in the same level of loess or paleosol from north to south is observed, suggesting an enhancement of pedogenesis. (ii) The low field susceptibility(χL) in loess unit L8 is almost the same in three sections. In contrast, the χL of paleosol unit S8 in Yichuan is highest, and the χL of Duanjiapo is lower than that in Yichuan section, suggesting that there is not correlation between the χL and the degree of pedogenesis in loess-paleosols. (iii) With the increasing of χL, both the contents of the superparamagnetic (SP) and the ferrimagnetic grains in loess-paleosol increase, however, the enhancement of magnetic susceptibility is probably dependent more on the increase of the ferrimagnetic concentration than on a change in the grain size. (iv) The content of the maghemite in loess unit 8 increases from the northern to the southern part of the Chinese Loess Plateau, and is positively correlated with the pedogenesis of the loess.  相似文献   

12.
Late Pleistocene records of loess deposition are a critical archive for understanding terrestrial paleoenvironment changes in Central Asia. The age of loess is not well known for the deserts regions and surrounding high plateaus in Central Asia. Previous studies have shown that there remains a disparity between ages for loess deposition by luminescence and 14C dating. This study evaluates the potential of optically stimulated luminescence (OSL) to date a loess sequence resting on fluvial sands in the east Ili Basin, Central Asia. The single-aliquot regenerative-dose (SAR) protocol on coarse grain quartz was employed for equivalent dose determinations. The basal fluvial sand returned a secure OSL age, with low overdispersion value in equivalent doses (19 ± 2%) of ca. 36 ka and provides a close, but maximum age estimate (within 5 ka) on the initiation of loess deposition. However, the loess yielded high overdispersion values for equivalent doses and age reversals, coincident with diffuse paleosols; indicating that pedoturbation with loess deposition may be a dominant process. OSL ages between ca. 45 and 14 ka calculated using a maximum age model and OSL ages from other sites in the Basin suggests that the latest major period of loess deposition was between 70 and 10 ka ago. A future hypothesis to test based on these analyses is that there may be three periods of heightened loess deposition at ca. 45, 35 to 19 and 14 ka, when desert source areas to the west were particularly dry.  相似文献   

13.
Geomorphological investigations in the Russian Altai Mountains provide evidence for the extent and timing of Late Quaternary glaciations and aeolian sediments. Infrared optically stimulated luminescence (IR-OSL) and thermoluminescence (TL) dating of aeolian sediments from the central part of the Russian Altai were carried out on silty and sandy sediments that cover fluvial and glacio-fluvial terraces. Most samples from loess, loess-like sediments and sandy loess taken from different terrace sequences within the Altai Mountains provide IRSL ages suggesting a main aeolian deposition period between 25 and 15 ka. These data are consistent with those from the adjacent Mongolian Altai. Sand and silt layers within moraines yielded IRSL age estimates between 22 and 19 ka and correlate to the ice margins of the Last Glacial Maximum. Aeolian dune sands overlying or neighbouring the loess-like sediments and the fluvial terraces at some places provide evidence for Late Glacial (around 15 ka) and Early Holocene (around 9 ka) aeolian activity. The youngest sand sheets gave deposition ages of about 1.5 ka. These sediments covered graves and are related to overgrazing. They provide evidence for the significant human impact on the environment. Fluvial sediments, including silt and sandy gravel intermingled with charcoal, yielded contradicting radiocarbon and luminescence ages. IRSL age estimates obtained for the silty layers range from 19 to 18 ka and are significantly older than the radiocarbon ages, which gave sub-recent ages between 1170 and 910 BP. These data indicate fluvial sedimentation of debris and mudflows in a period of deforestation and strong soil erosion related to mining activities during the 9th and 10th century.  相似文献   

14.
Soil erosion is a particularly important problem in the loess areas of Central Europe. Numerous studies of past and present soil erosion based on colluvial sediments have so far been conducted. The main problem is the fact that colluvia usually do not represent the complete sedimentation record. Closed depressions (CDs) collect all colluvial sediments from their catchment, therefore, constitute sediment stores enabling the calculation of soil erosion rates. Colluvial sediments and fossil soils, infilling four CDs in the Polish loess belt, were OSL and C‐14 dated. Human settlements near the studied CDs were analyzed. Phases of soil erosion and colluviation from the Neolithic (5400–2900 bc ), from the Middle Bronze Age to the Early Iron Age (1600–0 bc ), and from the Early Middle Ages to Modern Times (500 AD until today) were documented within the CDs studied. Phases of low soil erosion rate and pedogenesis occurred from the Late Vistulian to the Early Neolithic and from the Iron Age to Early Middle Ages. This study reveals that these phases are not synchronous with the soil erosion phases in Central Europe, as the latter mainly occurred in the Bronze Age, Roman Period and Middle Ages. The obtained soil erosion rates were compared with erosion rates in different areas of Central Europe. This study indicates that in loess regions with long‐term agricultural land use, mean erosion rates (i.e. 3.7–5.9 t ha‐1 yr‐1) from the Middle Ages to Modern Times were ten times higher than during the entire prehistoric period (0.39–0.67 t ha‐1 yr‐1). The mean soil erosion rates for forested CDs was 0.24–0.74 t ha‐1 yr‐1. Soil erosion phases are most probably caused by human activities (i.e. land use change) but the early Holocene erosion phase (7.96 +/‐ 0.67 kyr) could have been induced by a climatic fluctuation (e.g. a 8.2 kyr Bond event). Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

15.
High-latitude dust (HLD) depositions on four glaciers of James Ross Island (the Ulu Peninsula) were analysed. The deposition rate on the selected glaciers varies from 11.8 to 64.0 g m−2, which is one order of magnitude higher compared to the glaciers in Antarctica or elsewhere in the world. A strong negative relationship between the sediment amount and altitude of a sampling site was found. This is most likely caused by the higher availability of aeolian material in the atmospheric boundary layer. General southerly and south-westerly wind directions over the Ulu Peninsula – with exceptions based on local terrain configuration – help to explain the significantly lower level of sediment deposition on San Jose Glacier and the high level on Triangular Glacier. X-ray fluorescence (XRF) spectrophotometry was used to estimate the relative proportions of the main and trace (lithophile) elements in the sediment samples. Both the sediment amount and the XRF results are analysed in a depth profile at each locality and compared among the glaciers, suggesting long-range transport of fine mineral material from outside James Ross Island. The distribution of aeolian sediment among the glaciers corresponds well with the prevailing wind direction on the Ulu Peninsula. © 2020 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents a simple physical concept of aeolian dust accumulation, based on the behaviour of the subprocesses of dust deposition and dust erosion. The concept is tested in an aeolian dust wind tunnel. The agreement between the accumulation curve predicted by the model and the accumulation curve obtained in the experiments is close to perfect and shows that it is necessary to discriminate between the processes of aeolian dust deposition and aeolian dust accumulation. Two important thresholds determine the accumulation process. For wind speeds below the deflation threshold, the aeolian accumulation of dust increases linearly with the wind speed. For wind velocities between the deflation threshold and the accumulation limit, the sedimentation balance is above unity and there is still accumulation, though it rapidly drops once the deflation threshold has been exceeded. At wind speeds beyond the accumulation limit, the sedimentation balance is below unity and there will no longer be an accumulation of dust. The thresholds have been determined in a wind tunnel test at friction velocity u* = 0·34 m s?1 (deflation threshold) and u* = 0·43 m s?1 (accumulation limit), but these values are only indicative since they depend heavily on the characteristics of the accumulation surface and of the airborne grains. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
本文对黄土高原和天山黄土区表土进行系统的岩石磁学和粒度测试分析,探讨了表土磁性特征及其环境意义,结果表明表土中的强磁性矿物均为磁铁矿和磁赤铁矿,弱磁性矿物为赤铁矿和纤铁矿或针铁矿,黄土高原黄土地层中的磁赤铁矿至少有部分属于风积成因.黄土高原表土中磁化率与频率磁化率呈良好的正相关,气候作用是主导黄土高原表上磁化率增强的主...  相似文献   

18.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

19.
Variation in the rubidium to strontium (Rb/Sr) ratio of the loess–palaeosol sequences has been proposed to reflect the degree of pedogenesis and weathering in the northwestern region of China. To characterize the Rb/Sr ratio of the dissolved loads of a single catchment, we analysed a 12·08 m sediment core from Daihai Lake in Inner Mongolia, north China. Dating control was provided by 210Pb, 137Cs and AMS‐14C. Sequential extraction experiments were conducted to investigate the concentrations of Rb and Sr on various chemical fractions in the lake sediments. Down‐core variation in the Rb/Sr ratios provides a record of Holocene weathering history. From 9 to 3·5 ka bp , accelerated chemical weathering was experienced throughout the Daihai catchment under mainly warm and humid conditions, and this reached a maximum at c. 5 ka bp . However, weathering was reduced between c. 8·25 and 7·90 ka bp , which may reflect the global 8·2 ka cooling event. After c. 2·5 ka bp , increased Rb/Sr ratios with higher frequency of fluctuations indicate reduced weathering within the Daihai catchment. The highest Rb/Sr ratios in the Little Ice Age lake sediments indicate the weakest phase of Holocene chemical weathering, resulting from a marked reduction in Sr flux into the basin. The Rb/Sr record also shows an enhancement of chemical weathering under today's climate, but its intensity is less than that of the Medieval Warm Period. Increased Rb/Sr in lake sediment corresponding to reduced catchment weathering is in striking contrast to Rb/Sr decrease in the glacial loess layers in the loess–palaeosol sequence. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
An IRSL age of 17.0 ± 2.2 ka (and a “mean age” of ca. 19 ka) reported by Grapes et al. [Grapes, R., Rieser, U., Wang, N. Optical luminescence dating of a loess section containing a critical tephra marker horizon, SW North Island of New Zealand. Quaternary Geochronology 5(2-3), 164–169.] for the Kawakawa/Oruanui tephra, and other ages associated with a loess section in New Zealand are untenable: age data presented are inconsistent, no formal statistical treatments or error determinations were undertaken in age analysis, and the ages proposed are seriously at odds with multiple radiocarbon age determinations on tephra sequences bracketing the Kawakawa/Oruanui tephra and with palaeoenvironmental evidence elsewhere for the time period concerned. We suggest that the bulk polymineral IRSL ages on the tephra and encapsulating loess deposits were underestimated in part because of contamination of the loess by the integration of younger materials during slow deposition and continuous modification by upbuilding pedogenesis. Single-grain luminescence assays may reveal such contamination. A 14C-based age of ca. 27 ± 1 ka cal BP (2σ), reported in 2008, currently remains the best estimate for the age of eruption of the Kawakawa/Oruanui tephra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号