共查询到20条相似文献,搜索用时 15 毫秒
1.
Measurements made on the floors of the temporarily-drained Glenfarg and Glenquey Reservoirs indicate that sediments with wet volumes of 63.94 × 103 m3 and 12.64 × 103 m3 were deposited in 56 and 73 years respectively. These figures represent 2.5 per cent and 1.1 per cent losses of original storage capacity. When corrected for water, organic, and diatom skeleton contents, and reservoir trap efficiency inorganic sediment yields of at least 31.3 tonnes km?2 yr?1 and of 9.0 tonnes km?2 yr?1 are suggested. The difference is probably related to contrasts of land use. 相似文献
2.
Variability in rainfall threshold for debris flow after the Chi-Chi earthquake in central Taiwan, China 总被引:6,自引:0,他引:6
The purpose of this study is to analyze variability in rainfall threshold for debris flow (critical rainfall for debris flow triggering) after the ML 7.3 Chi-Chi earthquake in central Taiwan in 1999. Two study sites with different geological conditions were surveyed in the earthquake area. Streambed surveys were conducted to continuously monitor debris flows between 1999 and 2006. During the 7-year study period, every debris flow event was identified, and the streambed characterized. Results show that the rainfall threshold for debris flow was remarkably lower just after the Chi-Chi Earthquake, but gradually recovered. To date, this rainfall threshold is still lower than the original level prior to the earthquake. This variability in rainfall threshold is closely related to the mount of sediment material in the initiation area of debris flow, which increased rapidly due to landslides resulting from the earthquake. With the increase in sediment material, the rainfall threshold was lowered severely during the first year following the Chi-Chi earthquake. However, heavy rainfalls mobilized the sediment material, causing debris flows and transporting sediment downstream. With the decrease in sediment material, the rainfall threshold recovered gradually over time. Furthermore, debris flows occurred only in the subbasins that had sufficient sediment material to cause significant movement. Hence, these results confirm that the sediment material in the initiation area of debris flow is a crucial component of the rainfall threshold for debris flow. 相似文献
3.
GIS-based risk analysis of debris flow: an application in Sichuan, southwest China 总被引:15,自引:0,他引:15
Debris flow is a serious geologic hazard in China. It is estimated that nationally debris flows cause up to 2 billion RMB (250 million US$) in damages and 300-600 deaths and injuries annually. To mitigate debris flow hazards, it is necessary to map, model, and identify zones of debris flow hazards and vulnerability as to inform the local people about the potential risk with a geographic information system. This research presents a regional scale case study modeling debris flow risk (hazard and vulnerability) in Sichuan Province, Southwestern China. In this area, 3,290 debris flows have been identified and the spatial-temporal distribution and activity characteristics of them have been documented. Based on the available meteorological data, a Digital Elevation Model with the rate of 1:250,000 and a regional geological map, the 24-hr rainfall threshold (y) for debris flow occurrence is closely related (significant at 99% confidence level) to the index (x) defined using a geology factor (rock hardness: a) and a topographical factor (channel gradient: d) where y = 21 + 10200 / x, in which x = 2.7 × e^a + 1000 × d. The discipline is constructive in developing the rainfall threshold for debris flow activity in remote mountainous areas that lack data. For a given watershed, a four-level debris flow hazard map is developed by comparing the rainfall threshold to the design rainfall intensities with 50-, 20-, and 5-year average recurrence intervals, respectively. The degree of debris flow vulnerability is determined by the watershed socio-economic conditions. A four-class debris flow risk map, at the final phase of the research, is generated by combining debris flow hazards and vulnerability. With the debris flow risk assessment, the Sichuan Province is classified into the slight, moderate, severe and very severe regions, which accounts for 36%, 19%, 20% and 25% of total area respectively. 相似文献
4.
Size characteristics of sediment in interrill overland flow on a semiarid hillslope,Southern Arizona
This study examines the size characteristics of sediment removed from a semiarid hillslope by interrill overland flow. Rainfall simulation experiments were conducted on a runoff plot 18 m wide and 35 m long established on a piedmont hillslope in southern Arizona. The top of the plot coincided with the hillslope divide, and its outlet was located within a shallow rill. Samples of runoff were obtained from two cross-sections located in the interrill portion of the plot upslope of the rill and from a calibrated flume through which was directed interrill overland flow reaching the bottom of the plot. Analyses of sediment contained in these samples showed that sediment in interrill flow is finer than the matrix soil. The fineness of the interrill sediment compared to the matrix soil appears to be due to the inability of interrill overland flow to transport the coarser fraction of the sediment supplied to it by raindrop detachment. This finding implies that the rate of soil erosion in interrill areas is not. as is commonly supposed, limited by the rate at which raindrops can detach sediment but by the rate at which they detach sediment of a size that the overland flow is competent to transport. The relative fineness of sediment eroded from this hillslope is consistent with other evidence for the recent evolution of shrub-covered hillslopes in southern Arizona. 相似文献
5.
Introduction Since the tens years, the research on active fault has been stepped from qualitative phase toquantitative phase. With the developing of research on fault activity, fault segmentation, interac-tion among the adjacent or near fault segments, geodetic and paleoearthquake, scientists have re-alized that strong earthquake recurrence along active fault has different properties and multiplepatterns (Working Group on California Earthquake Probabilities, 1988, 1990, 1995, 1999, 2003… 相似文献
6.
The mathematic theory of Brownian passage-time model and its difference from other recurrence models such as Poisson, lognormal,
gamma and Weibull, were introduced. We assessed and analyzed the earthquake probabilities of the major faults with the elapsed
time much greater than the recurrence interval in the northwest region of Beijing (China) in 100-year by using both Brownian
passage-time model and Poisson model, and concluded that the calculated results obtained from Brownian passage-time model
is more reasonable.
Foundation item: Joint Seismological Science Foundation of China (103034) and Key Project “Assessment of Seismic Safety” from China Earthquake
Administration during the tenth Five-year Plan. 相似文献
7.
Extreme seasonal summer rain storms are common in the mountains to the north east of Beijing and these often result in mass movement of sediment slurries transported for up to a few km. These debris flows can be deadly and are very destructive to infrastructure and agriculture. This project tests the application of luminescence dating to determining the return frequency of such extreme events. The high sediment concentration and the very short flow duration gives very little opportunity for daylight resetting during transport and only a small fraction of the total mass is likely to be reset before transport begins. Here we examine the quartz single-grain dose distribution from a recent known-age (<25 years) debris flow from a small (∼3.9 km2) catchment ∼140 km north of Beijing and compare it with those from three samples from a sedimentary sequence containing the evidence of multiple flow events.Multi-grain quartz OSL signals are dominated by the fast component and <1% of the 150–200 μm grains give a detectable test dose (4.5 Gy) response. Single-grain beta dose recovery gave a ratio of 0.97 ± 0.06 (n = 30) with an over-dispersion of 23 ± 8% (CAM). Both the recent known age and the palaeo-distributions are highly dispersed with over-dispersions greater than 50%. The average weighted doses range between ∼3 mGy and ∼6.5 Gy, indicating that all deposits are no more than a few thousand years. Minimum age modelling give an age estimate for the youngest sample consistent with the known age, and minimum ages for the older palaeo-deposits suggest that there have been at least 3 major debris flows in this small catchment in the last 1000 years. 相似文献
8.
Seasonal soil water dynamics were measured at a fine-textured, upslope site within the jarrah forest of southwest Western Australia and compared to the results from a coarse-textured hillslope transect. Gravity drainage dominated during winter and early spring. This reversed in early summer and an upward potential gradient was observed to 7 m depth. A shallow ephemeral saturation zone was observed above a clay pan at 1.5 m depth. This saturation zone persisted through late winter and early spring, contrasting with the short-lived saturation in the duricrust on the hillslope transect. The annual maximum to minimum unsaturated soil water storage was about 530 mm, 50 mm greater than the hillslope transect and higher than most values reported elsewhere in Australia. Significant soil water content changes following winter rain were generally restricted to 6 m but at one site occurred to 9 m. These depths were significantly less than the coarser-textured hillslope transect. Soil water drying rates averaged 5 mm day?1 during extended dry periods compared to 3.5 mm day?1 on the hillslope transect. The drying rate occurred uniformly through the profile until late summer when a significant decrease in the upper 3 m was observed. 相似文献
9.
Sand columns, sand cones, sand mushrooms and other striking sand forms are frequently observed in the Dutch and German beach and dune sands. This paper aims to clarify the mechanism of sand column formation. Recently it has become evident that homogeneous beach and dune sands often become irregularly wetted by infiltrating rainwater. In otherwise dry sandy soils, wet preferential flow paths (‘fingers’) may develop. At two test sites the volumetric soil moisture content varied between 0·2 and 12·0 per cent. The wet fingers represent the premature state of sand columns. When the dry sand in between these fingers is blown away by the wind, the more resistant wet sand of the fingers will remain in its place and appear as sand columns at the surface. As a result of wind and erosive sand drifts, striking sand forms may be formed. 相似文献
10.
Seasonal soil water dynamics were measured on a hillslope transect in the jarrah forest of southwest Western Australia over the period 1984-86 using mercury manometer tensiometers, gypsum blocks, and a neutron moisture meter. The soil water potential gradients indicated downward vertical drainage flux through winter and spring. There was generally a change to an upwards flux in early summer which was sustained through to autumn. A shallow ephemeral saturation zone was identified in and above a duricrust layer, lasting up to three days after heavy, late winter rainfall. The annual maximum to minimum unsaturated soil water storage on the hillslope was approximately 400 mm to 6 m depth and 480 mm to 15 m depth. This did not change significantly in years of substantially different winter rainfall. The magnitude of seasonal soil water storage was similar to other forested areas with deep soil profiles. The depth of observable infiltration was dependent on annual rainfall. This was consistent with the observation that groundwater levels responded to rainfall over the whole hillslope in wet years but only responded on the lower slopes in dry years. The average summer drying rate of the soil profile to 6 m depth of 3.5 mm day?1 was within the range of values reported for forests elsewhere. In late summer, following an extended drought period, the drying rate decreased downslope but increased midslope. 相似文献
11.
Investigation of well-exposed volcaniclastic deposits of Shiveluch volcano indicates that large-scale failures have occurred
at least eight times in its history: approximately 10,000, 5700, 3700, 2600, 1600, 1000, 600 14C BP and 1964 AD. The volcano was stable during the Late Pleistocene, when a large cone was formed (Old Shiveluch), and became
unstable in the Holocene when repetitive collapses of a portion of the edifice (Young Shiveluch) generated debris avalanches.
The transition in stability was connected with a change in composition of the erupting magma (increased SiO2 from ca. 55–56% to 60–62%) that resulted in an abrupt increase of viscosity and the production of lava domes. Each failure
was triggered by a disturbance of the volcanic edifice related to the ascent of a new batch of viscous magma. The failures
occurred before magma intruded into the upper part of the edifice, suggesting that the trigger mechanism was indirectly associated
with magma and involved shaking by a moderate to large volcanic earthquake and/or enhancement of edifice pore pressure due
to pressurised juvenile gas. The failures typically included: (a) a retrogressive landslide involving backward rotation of
slide blocks; (b) fragmentation of the leading blocks and their transformation into a debris avalanche, while the trailing
slide blocks decelerate and soon come to rest; and (c) long-distance runout of the avalanche as a transient wave of debris
with yield strength that glides on a thin weak layer of mixed facies developed at the avalanche base. All the failures of
Young Shiveluch were immediately followed by explosive eruptions that developed along a similar pattern. The slope failure
was the first event, followed by a plinian eruption accompanied by partial fountain collapse and the emplacement of pumice
flows. In several cases the slope failure depressurised the hydrothermal system to cause phreatic explosions that preceded
the magmatic eruption. The collapse-induced plinian eruptions were moderate-sized and ordinary events in the history of the
volcano. No evidence for directed blasts was found associated with any of the slope failures.
Received: 28 June 1998 / Accepted: 28 March 1999 相似文献
12.
An infiltration model based on flow variability in macropores: development, sensitivity analysis and applications 总被引:1,自引:0,他引:1
Simulating infiltration in soils containing macropores still provides unsatisfactory results, as existing models seem not to capture all relevant processes. Recent studies of macropore flow initiation in natural soils containing earthworm channels revealed a distinct flow rate variability in the macropores depending on the initiation process. When macropore flow was initiated at the soil surface, most of the macropores received very little water while a few macropores received a large proportion of the total inflow. In contrast, when macropore flow was initiated from a saturated or nearly saturated soil layer, macropore flow rate variation was much lower. The objective of this study was to develop, evaluate, and test a model, which combines macropore flow variability with several established approaches to model dual permeability soils. We then evaluate the INfiltration–INitiation–INteraction Model (IN3M) to explore the influence of macropore flow variability on infiltration behavior by performing a sensitivity analysis and applying IN3M to sprinkling and dye tracer experiments at three field sites with different macropore and soil matrix properties. The sensitivity analysis showed that the flow variability in macropores reduces interaction between the macropores and the surrounding soil matrix and thus increases bypass flow, especially for surface initiation of macropore flow and at higher rainfall intensities. The model application shows reasonable agreement between IN3M simulations and field data in terms of water balance, water content change, and dye patterns. The influence of macropore flow variability on the hydrological response of the soil was considerable and especially pronounced for soils where initiation occurs at the soil surface. In future, the model could be applied to explore other types of preferential flow and hence to get a generally better understanding of macropore flow. 相似文献
13.
Soil moisture variation in relation to topography and land use in a hillslope catchment of the Loess Plateau, China 总被引:38,自引:0,他引:38
The profile characteristics and the temporal dynamics of soil moisture variation were studied at 26 locations in Da Nangou catchment (3.5 km2) in the loess area of China. Soil moisture measurements were performed biweekly at five depths in the soil profile (0–5, 10–15, 20–25, 40–45 and 70–75 cm) from May to October 1998 using Delta-T theta probe. Soil moisture profile type and temporal variation type and their relationship to topography and land use were identified by detrended canonical correspondence analysis (DCCA) and correlation analysis. The profile distribution of time-averaged soil moisture content can be classified into three types i.e. decreasing-type, waving-type and increasing-type. The profile features of soil moisture (e.g. profile gradient and profile variability) are influenced by different environmental factors. The profile type of soil moisture is only attributed to land use while profile gradient and profile variability of soil moisture is mainly related to land use and topography (e.g. landform type and slope). The temporal dynamics of layer-averaged soil moisture content is grouped into three types including three-peak type, synchro-four-peak type and lagged-four-peak type. These types are controlled by topography rather than by land use. The temporal dynamic type of soil moisture shows significant correlation with relative elevation, slope, aspect, while temporal variance displays significant relation with slope shape. The mean soil moisture is related to both the profile and dynamics features of soil moisture and is controlled by both land use and topography (e.g. aspect, position, slope and relative elevation). The spatial variability of soil moisture across landscape varies with both soil depths and temporal evolution. 相似文献
14.
青藏高原东北缘热水-日月山断裂带热水段古地震初步研究 总被引:1,自引:0,他引:1
通过遥感影像解译和详细的野外填图,获得了热水-日月山断裂带热水断裂段的断错地貌,其水系右旋断错量为140~940m.沿断裂带的探槽开挖,揭示距今9645±220 a B.P,热水段曾发生一次古地震事件;结合前人的研究结果,认为热水-日月山断裂带热水断裂段上古地震复发间隔约3365 a,全新世以来的倾滑速率为0.03 mm/a.热水-日月山断裂带上已揭露出3次古地震事件,分别为9865±40 a B.P~9425±35 aB.P,6280±120 a B.P和2220±360 a B.P,复发间隔为3500 a左右,由于该断裂段最近一次古地震事件距今已接近2220年,与其复发间隔3365 a年相比尚有一段时间,但考虑到古地震事件的不确定性和年代样品的误差,初步推断热水-日月山断裂带热水段的地震危险性不大,但不排除有中强地震的可能性. 相似文献
15.
16.
We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière
Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently
generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered
by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition.
The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5,
2.5, and 0.05 km3. The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector
failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase,
and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into
the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient
air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates
a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires
injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily
formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be
attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic
collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each
phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern
3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted
to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC.
This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum
particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local
topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic
deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly
magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly
viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity.
Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally
from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom
to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive
ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The
layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate.
Layer B exhibits relatively well-sorted fines-depleted debris with some charred plant fragments; its deposition occurred by
rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive
layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly
tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction
deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above
the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines
and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived
from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests
that these cases represent similar source, transport and depositional phenomena. 相似文献
17.
18.
A case study of spatial heterogeneity of soil moisture in the Loess Plateau, western China: A geostatistical approach 总被引:7,自引:2,他引:7
BI Huaxing LI Xiaoyin LIU Xin GUO Mengxia LI Jun Prof. College of Soil Water Conservation Beijing Forestry University Beijing China Key Laboratory of Soil Water Conservation Desertification Combating Ministry of Education China Researcher Ji-xian National Ecological Station of China China Graduate student 《国际泥沙研究》2009,24(1):63-73
Soil moisture distribution shows highly variation both spatially and temporally. This study assesses the spatial heterogeneity of soil moisture on a hill-slope scale in the Loess Plateau in West China by using a geostatistical approach. Soil moisture was measured by time-domain reflectometry (TDR) in 313 samples. Two kinds of sampling scales were used (2 × 2 m and 20 ×20 m) at two soil layers (0-30 cm and 30-60 cm). The general characteristics of soil moisture were analyzed by a classical statistics method, and the spatial heterogeneity of soil moisture was analyzed using a geostatistical approach. The results showed that the spherical model is the best-fit model to simulate soil moisture on the experimental hill-slope. The parameters of this model indicated that the spatial dependence of soil moisture in the selected hill-slope was moderate. Even the 2 × 2 m sampling scale was too coarse to show the detailed spatial variances of soil moisture in this area. The dependent distance increased from 27.4 m to 494.16 m as the sampling scale became coarse (from 2× 2 m to 20 ×20 m). A map of soil moisture was generated by using original soil moisture data and interpolated values determined by the Kriging method. The average soil moisture (area weighted) in the different layers of soil was calculated on the basis of this map (10.94% for the 0-30 cm soil layer, 11.88% for the 30-60 cm soil layer). This average soil moisture is lower than the corresponding average effective soil moisture, which suggests that the soil moisture is not sufficient to support vegetation in this area. 相似文献
19.
Flow and sedimentary processes in the meandering river South Esk,Glen Clova,Scotland 总被引:1,自引:0,他引:1
Channel geometry, flow and sedimentation in a meander bend of the River South Esk were studied from bankfull stages (January–February) to low water stages (May) in 1974. Bed topography varied little over the study period, showing a typical pool and ripple geometry. Variation of mean depth and velocity with discharge differed from section to section around the bend, due primarily to locally varying flow resistance with stage. The flow pattern for all stages was dominated by a single spiral over the point bar, with a development zone at the bend entrance. Deviation of bed shear stress from the mean flow direction was in general accord with theory, especially for high stages. The use of a uniform longitudinal water surface slope in the calculation of bed shear stress is not justified because of a complicated water surface topography, also such calculated shear may not represent effective bed shear on grains, as it accounts also for energy losses associated with secondary flows. Dunes covered much of the bar at high stages, with increasing proportions of ripples, sand ribbons and lower phase plane beds at low stages. Local flow resistance generally decreases from dunes, diminished and ripple-backed dunes, ripples, sand ribbons to plane beds, and bed forms are predicted quite well by the stream power-grain size scheme. Mean size, sorting and skewness of sediment over the bed changes little with stage. In general, size decreases, sorting improves and skewness changes from positive to negative from the talweg to the inner bank, and in the downstream direction. Allen's (1970a, b) force balance equation for moving bed load particles is supported for bankfull stage, with some reservations, and textural characteristics are explained by progressive sorting in the direction of sediment transport. Large-scale trough cross stratification (with some flat bedding) formed at high stage by dunes (and lower phase plane beds) dominates the point bar sediments. Alternations of fine-medium sand (often cross-laminated) and vegetation-rich layers result from periodic deposition on the grassed upper bar surface. Fining upwards sequences produced by lateral channel migration are modified by a coarsening upward subsequence in the upstream bar region where spiral flow is developing from the bend upstream. 相似文献
20.
Wang Yanhui 《水文研究》1992,6(2):241-251
Black locust (Robina pseudoacacia) has become one of the most important shelter species in the loess area of northwest China. This paper summarizes recent research concerning its hydrological influence, including canopy interception, litter absorption capacity, its effect on rainfall kinetic energy, infiltration rates, surface runoff, soil moisture, and evapotranspiration, and its role in soil conservation. Several predictive models are listed. on the basis of existing results, optimum characteristics for an effective plantation are defined, and problems requiring further research are identified. 相似文献