共查询到5条相似文献,搜索用时 0 毫秒
1.
M. Nakagawa K. Wada T. Thordarson C. P. Wood J. A. Gamble 《Bulletin of Volcanology》1999,61(1-2):15-31
Ruapehu volcano erupted intermittently between September and November 1995, and June and July 1996, producing juvenile andesitic
scoria and bombs. The volcanic activity was characterized by small, sequential phreatomagmatic and strombolian eruptions.
The petrography and geochemistry of dated samples from 1995 (initial magmatic eruption of 18 September 1995, and two larger
events on 23 September and 11 October), and from 1996 (initial and larger eruptions on 17–18 June) suggest that episodes of
magma mixing occurred in separate magma pockets within the upper part of the magma plumbing system, producing juvenile andesitic
magma by mixing between relatively high (1000–1200 °C)- and low (∼1000 °C)- temperature (T) end members. Oscillatory zoning
in pyroxene phenocrysts suggests that repeated mixing events occurred prior to and during the 1995 and 1996 eruptions. Although
the 1995 and 1996 andesitic magmas are products of similar mixing processes, they display chronological variations in phenocryst
clinopyroxene, matrix glass, and whole-rock compositions. A comparison of the chemistry of magnesian clinopyroxene in the
four tephras indicates that, from 18 September through June 1996, the tephras were derived from at least two discrete high-temperature
(high-T) batches of magma. Crystals of magnesian clinopyroxene in the 23 September and 11 October tephras appear to be derived
from different high-T magma batches. Whole-rock and matrix-glass compositions of all tephras are consistent with their derivation
from distinct mixed melts. We propose that, prior to 1995 there was a shallow low-temperature (low-T) magma storage system
comprising crystal-rich mush and remnant magma from preceding eruptive episodes. Crystal clots and gabbroic inclusions in
the tephras attest to the existence of relict crystal mush. At least two discrete high-T magmas were then repeatedly injected
into the mush zone, forming discrete and mixed magma pockets within the shallow system. The intermittent 1995 and 1996 eruptions
sequentially tapped these magma pockets.
Received: 1 April 1998 / Accepted: 22 December 1998 相似文献
2.
Michael O. Garcia J. M. Rhodes Frank A. Trusdell Aaron J. Pietruszka 《Bulletin of Volcanology》1996,58(5):359-379
The Puu Oo eruption has been remarkable in the historical record of Kilauea Volcano for its duration (over 13 years), volume
(>1 km3) and compositional variation (5.7–10 wt.% MgO). During the summer of 1986, the main vent for lava production moved 3 km down
the east rift zone and the eruption style changed from episodic geyser-like fountaining at Puu Oo to virtually continuous,
relatively quiescent effusion at the Kupaianaha vent. This paper examines this next chapter in the Puu Oo eruption, episodes
48 and 49, and presents new ICP-MS trace element and Pb-, Sr-, and Nd-isotope data for the entire eruption (1983–1994). Nearly
aphyric to weakly olivine-phyric lavas were erupted during episodes 48 and 49. The variation in MgO content of Kupaianaha
lavas erupted before 1990 correlates with changes in tilt at the summit of Kilauea, both of which probably were controlled
by variations in Kilauea's magma supply rate. These lavas contain euhedral olivines which generally are in equilibrium with
whole-rock compositions, although some of the more mafic lavas which erupted during 1990, a period of frequent pauses in the
eruption, accumulated 2–4 vol.% olivine. The highest forsterite content of olivines (∼85%) in Kupaianaha lavas indicates that
the parental magmas for these lavas had MgO contents of ∼10 wt.%, which equals the highest observed value for lavas during
this eruption. The composition of the Puu Oo lavas has progressively changed during the eruption. Since early 1985 (episode
30), when mixing between an evolved rift zone magma and a more mafic summit reservoir-derived magma ended, the normalized
(to 10 wt.% MgO) abundances of highly incompatible elements and CaO have systematically decreased with time, whereas ratios
of these trace elements and Pb, Sr, and Nd isotopes, and the abundances of Y and Yb, have remained relatively unchanged. These
results indicate that the Hawaiian plume source for Puu Oo magmas must be relatively homogeneous on a scale of 10–20 km3 (assuming 5–10% partial melting), and that localized melting within the plume has apparently progressively depleted its incompatible
elements and clinopyroxene component as the eruption continued. The rate of variation of highly incompatible elements in Puu
Oo lavas is much greater than that observed for Kilauea historical summit lavas (e.g., Ba/Y 0.09 a–1 vs ∼0.03 a–1). This rapid change indicates that Puu Oo magmas did not mix thoroughly with magma in the summit reservoir. Thus, except
for variable amounts of olivine fractionation, the geochemical variation in these lavas is predominantly controlled by mantle
processes.
Received: 8 March 1996 / Accepted: 30 April 1996 相似文献
3.
Analysis of the petrochemical characters of the 1669 Etnean lavas shows that they can be grouped into two sets: SET1 lavas
were erupted from 11 to 20 March and are more primitive in composition than SET2, erupted later until the end of activity.
Both sets may be interpreted as the result of crystallization under different conditions of two primary magmas which are compositionally
slightly distinct and which fractionate different volumetric proportions of minerals. To explain why more mafic lavas (SET1)
were erupted earlier than more acid ones (SET2), we argue that new deeper magma rose up into a reservoir where residing magma
was fractionating. Density calculations demonstrate that new magma is less dense and may originate a plume, rapidly rising
through the residing magma which is cooler and more volatile-depleted than the new magma. Calculations of uprise velocity
assuming laminar flow are consistent with this hypothesis.
Received: 20 November 1995 / Accepted: 2 August 1996 相似文献
4.
Measurements of CO2 fluxes from open-vent volcanos are rare, yet may offer special capabilities for monitoring volcanos and forecasting activity.
The measured fluxes of CO2 and SO2 from Mount St. Helens decreased from July through November 1980, but the record includes variations of CO2/SO2 in the emitted gas and episodes of greatly increased fluxes of CO2. We propose that the CO2 flux variations reflect two gas components: (a) a component whose flux decreased in proportion to 1/ √t with a CO2/SO2 mass ratio of 1.7, and (b) a residual flux of CO2 consisting of short-lived, large peaks with a CO2/SO2 mass ratio of 15. We propose two hypotheses: (a) the 1/ √t dependence was generated by crystallization in a deep magma body at rates governed by diffusion-limited heat transfer, and
(b) the gas component with the higher CO2/SO2 was released from ascending magma, which replenished the same magma body. The separation of the total CO2 flux into contributions from known processes permits quantitative inferences about the replenishment and crystallization
rates of open-system magma bodies beneath volcanos. The flux separations obtained by using two gas sources with distinct CO2/SO2 ratios and a peak minus background approach to obtain the CO2 contributions from an intermittent source and a continuously emitting source are similar. The flux separation results support
the hypothesis that the second component was generated by episodic magma ascent and replenishment of the magma body. The diffusion-limited
crystallization hypothesis is supported by the decay of minimum CO2 and SO2 fluxes with 1/ √t after 1 July 1980. We infer that the magma body at Mount St. Helens was replenished at an average rate (2.8×106 m3 d–1) which varied by less than 5% during July, August, and September 1980. The magma body volume (2.4–3.0 km3) in early 1982 was estimated by integrating a crystallization rate function inferred from CO2 fluxes to maximum times (20±4 years) estimated from the increase of sample crystallinity with time. These new volcanic gas
flux separation methods and the existence of relations among the CO2 flux, crystallization rates, and magma body replenishment rates yield new information about the dynamics of an open-vent,
replenished magma body.
Received: 15 February 1995 / Accepted: 30 March 1996 相似文献
5.
Daniel J. Johnson Freysteinn Sigmundsson Paul T. Delaney 《Bulletin of Volcanology》2000,61(7):491-493
In volcanoes that store a significant quantity of magma within a subsurface summit reservoir, such as Kīlauea, bulk compression
of stored magma is an important mode of deformation. Accumulation of magma is also accompanied by crustal deformation, usually
manifested at the surface as uplift. These two modes of deformation – bulk compression of resident magma and deformation of
the volcanic edifice – act in concert to accommodate the volume of newly added magma. During deflation, the processes reverse
and reservoir magma undergoes bulk decompression, the chamber contracts, and the ground surface subsides. Because magma compression
plays a role in creating subsurface volume to accommodate magma, magma budget estimates that are derived from surface uplift
observations without consideration of magma compression will underestimate actual magma volume changes.
Received: 30 September 1998 / Accepted: 27 July 1999 相似文献