共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental degradation assessment in arid areas: a case study from Basra Province, southern Iraq 总被引:1,自引:0,他引:1
Evaluation of recent land degradation affecting Basra Province, Iraq, resulted in the identification of five prominent environmental degradation processes: desertification, secondary salinization, urbanization, vegetation degradation, and loss of wetlands. This analysis was carried out using ‘3S’ technologies [remote sensing, geographic information system (GIS), and global position system], with the layers extracted and manipulated from available topographic, climatic, and soil maps, as well as satellite image (thematic mapping in 1990 and enhanced thematic mapping in 2003) and field survey data analyses. Rates of conversion were calculated and distribution patterns were mapped with the aid of a GIS. The results revealed that land use changes have affected the wider environment and accelerated land degradation, with severe damage located in southwestern Basra Province representing 28.1 % of the total area. Areas of high to moderate degradation characterize the rest of the south, representing 52.7 % of the total area; while the north of the study region is characterized by very low and low degradation levels accounting for 8.5 and 10.7 %, respectively. Iraq faces serious environmental degradation problems that must be addressed immediately; failure to do so will greatly compound the cost and complexity of later remedial efforts, with environmental degradation beginning even now to pose a major threat to human well-being, especially among the poor. 相似文献
2.
Zabih Alah Rostami Seyed Ali Al-modaresi Hassan Fathizad Marzban Faramarzi 《Arabian Journal of Geosciences》2016,9(17):685
Landslides are introduced as regional movements, which influence different engineering structures such as roads, railways, and dams and cause the person’s death. Identification of landslide zones may decrease the financial losses and human injuries or deaths. This study tries to achieve a landslide susceptibility mapping in Cham-gardalan catchment by weighting the main criteria and the membership functions of fuzzy logic. For this, we applied the best relationship function between the presence and absence of landslides as well as a collection of the elements. At first, the landslide points were identified by the means of some components those of satellite images, topographical (1:50,000) and geographical (1:100,000) maps, field visits, and Google Earth software followed by the preparation of landslide distribution maps. Then, all effective landslide factors such as percentage of slope, slope aspect, height, geology, land uses, distance from roads, distance from drainages, distance from breakage, and precipitation map have been utilized in order to conduct the fuzzy analyses. Landslide susceptibility map was performed by fuzzy operators (Gamma, Product, Sum, Or, And) in the study area. After fuzzificating and weighting, the effective criteria of landslides were determined through fuzzy Gamma operators with the landaus of 0.2, 0.5, 0.8, and 0.9 and by comparing final maps for making an appropriate model of landslide susceptibility mapping. The regional susceptibility map represents the landslide-prone areas in five categories those of very low, low, moderate, high, and very high. Our results indicated that among the applied operators, Gamma with landau of 0.9 can be used as an appropriate method for mapping the landslide susceptibility due to the suitable fuzzification of given criteria based on landslide distribution maps. In addition, the elements of road, percentage of slope, distance from drainage, and geology were recognized as the most important factors for occurring the landslides. 相似文献
3.
Landscape change and sandy desertification in arid areas: a case study in the Zhangye Region of Gansu Province, China 总被引:3,自引:0,他引:3
The Zhangye Region of Gansu Province is an important agricultural base in arid northwestern China. During the twentieth century, especially in the last five decades, the region has experienced sandy desertification. To document the status and causes of this deterioration, satellite images, meteorological and socioeconomic data to assess landscape change from 1993 to 2002 were interpreted and analyzed. The results show that during the intervening 9-year period the area of sandy lands has increased by 642.2 km2, which consist of aeolian sand dune (357.1 km2) and potential sandy land (216.3 km2). Although the development and reversion of sandy desertification co-exist, the sandy desertification in this area seems serious and is attributable to the irrational use of water and land. 相似文献
4.
Shiyang River basin, located in the eastern part of Hexi Corridor in the middle Gansu province, NW China, is a typical arid
to semiarid area. Within its drainage distance of merely 300 km, the groundwater system shows a gradual hydrochemical zonation
from the upper reach to the lower reach, which is composed of hydrocarbonate, sulfate to chloride zones respectively. Variation
in the saturation index (SI) of calcite and dolomite shows that, under arid to semiarid conditions, the drastic evaporation
causes the groundwater quality to deteriorate in the lower reach. Isotopic compositions of H, O and He in the groundwater
show that the groundwater recharge sources are mainly from meteoric water. δ3He–3He/20Ne coordinates could clearly distinguish the water sources and mixing among them. In the Caiqi region, there is apparent mixing
of the crevice water containing excess 4He with the overlying groundwater, which also implies a much lower circulation rate of the groundwater. Fairly high 3He/4He ratios of the groundwaters collected from the adjacent area of hidden faults along Qilian Mountains show the eminent input
of mantle-derived helium, indicating that these faults not only cut the crust deeply, but are currently active.
Received: 11 February 2000 · Accepted: 23 May 2000 相似文献
5.
This paper describes the application of the knowledge-based fuzzy logic method to integrate various exploratory geo-dataset in order to prepare a mineral prospectivity map (MPM) for copper exploration. Different geophysical layers which are derived from the magnetic and the electrical surveys, along with the ones extracted from the background geology (i.e., lithology, fault and alteration) and geochemical data are incorporated in such process. Seridune copper deposit located in the Kerman province of Iran is the case study to delineate its high potential zones of Cu-bearing mineralization for drilling additional boreholes. Four layers from the magnetic data involving upward continuation, analytic signal, reduced to pole and pseudo gravity are assigned in the multi-disciplinary geo-dataset to locate the intrusive complexes responsible for Cu mineralization. The apparent resistivity, chargeability and sulfide factor layers acquired from geo-electrical data are also included in the final preparation of MPM. Then the normalized weights of seven geophysical, three geological and one geochemical evidential layers as main criteria are determined based upon the knowledge of expert decision makers. Fuzzy operators (i.e., Sum and Gamma) are applied to integrate these exploratory features. To evaluate the performance and applicability of the approach, the productivity of the drilled boreholes (Cu concentration multiplied by ore thickness) are used to validate the produced MPMs. It is shown that an optimum correlation coefficient of 0.86 exists between the MPM values and Cu productivity criterion along drilled boreholes. 相似文献
6.
PFR model and GiT for landslide susceptibility mapping: a case study from Central Alborz, Iran 总被引:2,自引:0,他引:2
In northern parts of Iran such as the Alborz Mountain belt, frequent landslides occur due to a combination of climate and geologic conditions with high tectonic activities. This results in millions of dollars of financial damages annually excluding casualties and unrecoverable resources. This paper evaluates the landslide susceptible areas in Central Alborz using the probabilistic frequency ratio (PFR) model and Geo-information Technology (GiT). The landslide location map in this study has been generated based on image elements interpreted from IRS satellite data and field observations. The display, manipulation and analysis have been carried out to evaluate layers such as geology, geomorphology, soil, slope, aspect, land use, distance from faults, lineaments, roads and drainages. The validation group of actual landslides and relative operation curve method has been used to increase the accuracy of the final landslide susceptibility map. The area under the curve evaluates how well the method predicts landslides. The results showed a satisfactory agreement of 91% between prepared susceptibility map and existing data on landslide locations. 相似文献
7.
Aida Hashemi Nasab Hossein Ansary Seyed Hossein Sanaei-Nejad 《Arabian Journal of Geosciences》2018,11(14):390
In arid to semi-arid climates, monitoring drought is very complicated because of different hydrometeorology variables effect on it. It is proposed in this paper to develop Fuzzy Integrated Drought Index (FIDI) which combines most important effective factors in developing drought. At first, Variable Infiltration Capacity (VIC) model calibrated simulated runoff to outlet basin runoff data for years 1993–1995. Results represent high performance of model in simulating runoff of outlet basin. Then, Precipitation Anomaly Percentage Index (PAPI), actual Evapotranspiration Anomaly Percentage Index (EAPI), Runoff Anomaly Percentage Index (RAPI), and Soil Moisture Anomaly Percentage Index (SMAPI) were constructed. FIDI was compared with the PAPI, RAPI and SMAPI for the period of 1985 to 2014. The results indicate that (1) the FIDI has more ability in determining start and persistence of drought event compared with PAPI, RAPI, and SMAPI; (2) in the low time scales, PAPI and SMAPI have high correlation with FIDI, and in the higher time scales, RAPI has the high correlation with FIDI; (3) spatially, the middle, west, and portion of north have higher drought risk in the Neyshabour basin. 相似文献
8.
Qom is the eighth most populated city in center of Iran, and its population growth rate is among the highest in this country. Th presence of a Great Salt Lake, petroleum potential and tourism attractions in this city sheds light on the importance of how solid waste landfill locations should be disposed, located and managed as an environmental issue. Considering the key parameters in landfill site selection, in this study a series of location analysis have been conducted to locate optimum regions for municipal solid waste disposal, using analytical hierarchy process (AHP) and geographical information system (GIS). The main factors in selecting the suitable location for waste disposal include geomorphology–hydrography, environmental–social factors and design criteria, each of which are subdivided into several categories. Criteria are selected according to the regional condition; therefore, important factors such as distance from sea and forested areas were not considered. In the next step, digital layers are weighted and classified according to the available standards and expert judgment. Then, analytical multi-criteria decision-making algorithms as AHP and weighted linear combination are applied upon existing layers in GIS. The results show that by implementing the AHP method in this region only 7% of the study area has a very good and appropriate condition for landfill location and the field observation confirms them. Finally, considering the environmental effects of landfill, appropriate locations are suggested. 相似文献
9.
Chabahar Bay, in southeastern Iran, lies at the north of the Gulf of Oman and close to the Makran Subduction Zone, which makes it a region that is susceptible to tsunamis. This bay has an increasingly important role in Iran’s international trade, and therefore the assessment of the regional vulnerability to the effects of a tsunami is vital. Based on both the details of historical events and the results of numerical modeling of the propagation pattern of a tsunami in this region, this study assessed the vulnerability of buildings within the Chabahar Bay region to a tsunami event. The Papathoma Tsunami Vulnerability Assessment (PTVA) model was used to calculate a relative vulnerability index (RVI) for the affected buildings based on their physical and structural characteristics. The results showed that in a postulated worst-case-scenario tsunami event in the Chabahar Bay area, approximately 60 % of the residential buildings would be affected, a level of damage that is categorized as “Average” in the RVI classification. Overall, the economic losses related to the damage of residential buildings due to a tsunami in the Chabahar Bay area are anticipated to be the equivalent of US$ 16.5 million. 相似文献
10.
Avalanche hazard and risk mapping is of utmost importance in mountain areas in Europe and elsewhere. Advanced methods have been developed to describe several aspects of avalanche hazard assessment, such as the dynamics of snow avalanches or the intensity of snowfall to assume as a reference meteorological forcing. However, relatively little research has been conducted on the identification of potential avalanche release areas. In this paper, we present a probabilistic assessment of potential avalanche release areas in the Italian Autonomous Province of Bolzano, eastern Alps, using the Weights of Evidence and Logistic Regression methods with commonly available GIS datasets. We show that a data-driven statistical model performs better than simple, although widely adopted, screening criteria that were proposed in the past, although the complexity of observed release areas is only partly captured by the model. In the best case, the model enables predicting about 70 % of avalanches in the 20 % of area classified at highest hazard. Based on our results, we suggest that probabilistic identification of potential release areas could provide a useful aid in the screening of sites for subsequent, more detailed hazard assessment. 相似文献
11.
Yousef Ghanbari Ardeshir Hezarkhani Mohammad Ataei Kaveh Pazand 《Journal of the Geological Society of India》2014,83(4):457-465
One of the major strengths of a GIS is the ability to integrate and combine multiple layers of geoscience data for producing mineral potential maps showing favorable areas for mineral exploration. Once the data is prepared properly, the GIS, jointly with other statistical and geostatistical software packages, can be used to manipulate and visualize the data in order to produce a mineral prospectivity map. Many spatial modeling techniques can be employed to produce mineral potential maps. This paper demonstrates a technique to define favorable areas for REE mineralization with AHP technique using geological, geochemical, geophysical, alteration and faults density spatial data in the Kerman-Kashmar Tectonic Zone of central Iran. The AHP is a powerful and flexible multi-criteria decision-making tool for dealing with complex problems where both qualitative and quantitative aspects need to be considered. This approach is knowledgedriven method and can be applied in other areas for conventional use in mineral exploration. 相似文献
12.
13.
Landslides and slope instabilities are major risks for human activities which often lead to economic losses and human fatalities all over the world. The main purpose of this study is to evaluate and compare the results of Landslide Nominal Risk Factor (LNRF), Frequency Ratio (FR), and Analytical Hierarchy Process (AHP) models in mapping Landslide Susceptibility Index (LSI). The study case, Nojian watershed with an area of 344.91 km2, is located in Lorestan province of Iran. The procedure was as follows: first, the effective factors of the landslide basin were prepared for each layer in the GIS software. Then, the layers and the landslides of the basin were also prepared using aerial photographs, satellite images, and fieldwork. Next, the effective factors of the layers were overlapped with the map of landslide distribution to specify the role of units in such distribution. Finally, nine factors including lithology, slope, aspect, altitude, distance from the fault, distance from river, fault land use, rainfall, and altitude were found to be effective elements in landslide occurrence of the basin. The final maps of LSI were prepared based on seven factors using LNRF, FR, and AHP models in GIS. The index of the quality sum (Qs) was also used to assess the accuracy of the LSI maps. The results of the three models with LNRF (40%), FR (39%), and AHP (44%) indicated that the whole study area was located in the classes of high to very high hazard. The Qs values for the three models above were also found to be 0.51, 0.70 and 0.70, respectively. In comparison, according to the amount of Qs, the results of AHP and FR models have slightly better performed than the LNRF model in determining the LSI maps in the study area. Finally, the study watershed was classified into five classes based on LSI as very low, low, moderate, high, and very high. The landslide susceptibility maps can be helpful to select sites and mitigate landslide hazards in the study area and the regions with similar conditions. 相似文献
14.
Earth dam site selection is one of the most important problems in water resources management. It depends on a set of qualitative and quantitative criteria, and they may even be in conflict with each other. This study aims to develop a multicriteria decision-making approach to locate the dam site and construct a multipurpose earth dam in Harsin City at the western part of Iran. For this purpose, firstly, the influential criteria for locating the earth dam site were determined using a comprehensive literature review and the experts’ opinions. Then, some watersheds in the surrounding areas of Iran’s Harsin City were studied and four feasible sites proposed. In the final stage, these sites, in order to construct a multipurpose earth dam, were prioritized using the analytic hierarchy process approach and the most optimal site was selected. 相似文献
15.
16.
17.
A catchment water balance model for estimating groundwater recharge in arid and semiarid regions of south-east Iran 总被引:1,自引:0,他引:1
This paper presents a new model of the rainfall-runoff-groundwater flow processes applicable to semiarid and arid catchments
in south-east Iran. The main purpose of the model is to assess the groundwater recharge to aquifers in these catchments. The
model takes into account main recharge mechanisms in the region, including subsurface flow in the valley alluvium in mountainous
areas and recharge from the bed of ephemeral rivers. It deals with the effects of spatial variation in the hydrological processes
by dividing the catchment into regions of broad hydrologic similarity named as highland, intermediate and aquifer areas. The
model is based on the concept of routing precipitation within and through the catchment. The model has been applied to the
Zahedan catchment and the results indicate that the groundwater level estimated by the recharge model generally is in agreement
with the behaviour of groundwater levels in observation wells. The sensitivity analysis indicates that when the rainfall in
the aquifer area is used to replace the values recorded in the intermediate area and the highland area, the recharge estimates
are reduced by 42-87%. This result supports the division of the catchment into different zones of hydrological similarity
to account for spatial variability of hydrological processes.
Electronic Publication 相似文献
18.
19.
20.
The southeast area of the Argentine Pampas is characterized by the presence of an unconfined aquifer in a wide plain. A methodology is proposed that deals with the aquifer vulnerability where the homogeneity of the hydrogeological variables used by traditional methods (in this case, DRASTIC-P) causes vulnerability maps to show more than 80% of the territory under the same class. This absence of discrimination renders vulnerability maps of little use to decision-makers. In addition, the proposed methodology avoids the traditional vague classification (high, low, and moderate vulnerability) which is highly dependent on subjectivity in its association of each class with hydrogeological considerations. That traditional vulnerability assessment methodology was adapted using a geographic information system to reclassify classes, based on the Natural Breaks (Jenks) method. The pixel-to-pixel comparison between the result obtained by the DRASTIC-P and the reclassified classes generates the so-called operational vulnerability index (OVI), which shows four classes, associating each with different hydrogeological requirements to make decisions. 相似文献