首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Results of spectroscopic measurements of the carbon dioxide total column amount near St. Petersburg during forest fires in the period from August to September 2002 are analyzed. The HYSPLIT model is used to calculate air-mass trajectories and CO distribution on a mesoscale in this period. The HYSPLIT model simulations and measurements of carbon dioxide total column amount yield an estimate of the specific intensity of CO emission in a Pskov forest fire on August 28–September 8, 2002, equal to 0.17–0.26 kg m2. This estimate can be used for an estimation of the integral CO emission from fires in northwestern Russian forests and for model simulations of atmospheric CO concentration fields. The estimate of the CO emission from forest fires that is obtained from ground-based measurements can also be made on the basis of satellite measurements if they contain information on CO in the lower tropospheric layers (0 to 2 km).  相似文献   

3.
We present ground-based spectroscopic measurements of the total hydrogen chloride in the atmosphere of Peterhof near St. Petersburg from April 2009 to March 2012. The well-known computer code SFIT-2 (Zephyr-2) was used to interpret the spectra of the solar IR radiation. The random and systematic errors of total column (TC) HCl measurements did not exceed 3.8 and 4.5%. The seasonal behavior of TC HCl in Peterhof is characterized by the presence of a maximum in March–April and a minimum in October–November. There are also extremely small TC HCl values in January–February. The time behavior obtained for Peterhof agrees well with data from nearest stations in the NDACC international network. The ground-based measurements of the TC HCl were compared with satellite measurements with the help of ACE-FTS and MLS instruments. The direct comparisons of coincident (within a day) and collocated (within 500 km) satellite and ground-based measurements showed a correspondence of results within their total errors.  相似文献   

4.
We analyzed measurements of the total carbon monoxide (CO) content in the atmosphere in the region of St. Petersburg (59.88°N, 29.83° E; 20 m above sea level) in the period from 1995 to 2009. The average annual behavior for the entire measurement period has a maximum in February–March and a minimum in July with an amplitude of ~20%. In the absence of strong forest fires in the European part of the Russian Federation and Siberia, the annual minimum of the total CO content is usually recorded in August–September. In winter 1995–2009 (November–January), there was a decrease in the total CO content with a gradual shift in the maximum of the annual behavior from January (1995–1999) to February (2000–2004) and March (2005–2009). The total CO content in January–February 2009 was ~20% lower than the multiyear average level. Estimates of the linear trend for the maximum, minimum, and average values for the period of 1996–2009 showed an absence of statistically significant long-term changes in the total CO content. A spectral analysis of data showed that the spectral components with periods of 12, 14, 17, 24, and 46 months are extracted with 80% confidence. It is shown that the irregular component of the time series of the total CO content (calculated for the period from May to September) agrees well with data on the areas of the forest fires and on the volume of the burnt forest and that 1999, 2001, 2005, 2007, and 2009 can be considered “background” years with the least numbers of forest fires.  相似文献   

5.
The space-time variability of the fields of CO, NO2, and O3 concentrations and contents in the troposphere of northwestern Russia is analyzed on the basis of experimental data and the results of numerical modeling. The influence that the St. Petersburg emission has on the concentrations and contents of CO, NO2, and O3 in the troposphere is estimated for March 2006. A comparison of the measurements of the total CO content and the tropospheric NO2 content with the results of modeling showed a qualitative and, in come cases, quantitative agreement between the results of calculations and experimental data. When synoptic conditions are determined, the St. Petersburg train can be detected at a distance of more than 300 km, which can affect the atmospheric air quality in adjacent countries.  相似文献   

6.
On the basis of ground based measurements of the infrared spectra of solar radiation with a high spectral resolution, estimates of total CFC-11 freon content in the atmosphere near St. Petersburg in January and May 2009 have been yielded in Russia for the first time. These data are conformed to various independent measurements within the limits of spectroscopic measurement errors.  相似文献   

7.
Izvestiya, Atmospheric and Oceanic Physics - The increase in the content of greenhouse gases (CO2, CH4, N2O, etc.) in the Earth’s atmosphere is changing the radiation balance and leading to...  相似文献   

8.
The results obtained from ground-based spectroscopic measurements of column-average dry-air mole fractions of CO2 in the atmosphere over the St. Petersburg region are given for the period April 2009–October 2011 (~900 measurement runs, 151 measurement days). These results show significant variations in the CO2 mixing ratio in the atmosphere over the St. Petersburg region. The minimum value of this mixing ratio (373.1 ppm) was observed on April 27, 2011, and its maximum value (420.8 ppm) was observed on February 10, 2010. The typical seasonal behavior of the CO2 mixing ratio with its summer minimum was observed in 2009. In July 2010 and 2011, the values of the CO2 mixing ratio increased apparently due to high air temperatures. In 2010 an additional contribution to this increase in the CO2 mixing ratio could have been made by strong natural fires.  相似文献   

9.
The results of ground-based and satellite spectroscopic measurements of the tropospheric NO2 content near St. Petersburg in January–March 2006 are presented. It is shown that the increased concentrations of NO2 observed in St. Petersburg and its vicinities in this period were caused by NO2 accumulation due to unfavorable weather conditions, which is confirmed by an analysis of meteorological data and the results of a numerical simulation of the dispersion of urban air pollutants. Data from satellite and ground-based measurements agree with each other satisfactorily (a correlation coefficient of 0.5) and with model calculations of tropospheric NO2 conducted for the coordinates of a station of ground-based measurements (a correlation coefficient of 0.6). The HYSPLIT dispersion model also made it possible to estimate the scale of the NO2 spatial-temporal variability in the near-surface layer in the vicinities of St. Petersburg.  相似文献   

10.
The results of measuring the methane content in the entire atmospheric thickness over the St. Petersburg region are given for 1991–2007. It is shown that, within this period, the mean annual cycle of the total methane content is characterized by its maximum values in December–January and its minimum values in June–August when the annual-cycle amplitude amounts to ∼3.6%. In this case, the annual variations in the total methane content may differ significantly from the mean annual cycle obtained in some years. A statistically significant linear trend of the total CH4 content has not been revealed for 1991–2007. The obtained values of the linear-trend index have opposite signs in the winter and summer months (positive for January 0.6 ± 0.2%/year and February 0.4 ± 0.2%/year and negative for July 0.3 ± 0.2%/year and August 0.2 ± 0.1%/year). This fact suggests the tendency for an increase in the amplitude of the annual cycle of the total CH4 content. The results of a spectral analysis of a series of data on the total CH4 content show that, for 1991–2007, the following harmonics are pronounced with a confidence of 95%: 12 months (annual harmonic), 32 months (quasi-biennial oscillations), and 55 months (4.5 years), which are also pronounced in the series of meteorological parameters and total ozone content.  相似文献   

11.
Izvestiya, Atmospheric and Oceanic Physics - The intensity of paleoearthquakes in the territory under study has been estimated by two methods: from the maximum displacement of Quaternary rocks...  相似文献   

12.
Concentrations of total carbonate, alkalinity and dissolved oxygen were obtained near the 1973 GEOSECS stations in the North Pacific subpolar region north of 40°N along 175°E between 1993 and 1994. A difference of excess CO2 content between the GEOSECS and our expeditions was estimated. The maximum difference in water column inventory of excess CO2 has increased by about 280 gC m–2 above 2000 m depth which apparently means an uptake of excess CO2 taken from air to sea during the last two decades. An averaged value of the annual flux of excess CO2 at 75–1000 m depth was 8.63±2.01 gC m–2yr–1 in the North Pacific subpolar region. By introducing the annual flux of excess CO2 into a two-box model for the North Pacific subpolar region, a penetration factor of excess CO2 from air to sea was obtained to be 1.08×10–2 gC m–3ppm–1 in the North Pacific subpolar region. Based on this factor, the surface concentration of excess CO2 in the North Pacific subpolar region was estimated to be 68 mole I–1, suggesting that the North Pacific subpolar region absorbed atmospheric excess CO2 more than the saturated concentration of excess CO2. Total amount of excess CO2 taken from the North Pacific subpolar region by 1993 was estimated to be 36.2×1015 gC, which was equal to about one tenth of that released by human activities after the preindustrial era.  相似文献   

13.
14.
The results of spectroscopic measurements of tropospheric NO2 content performed on a closed route along the circular road around the city of St. Petersburg in 2012, 2014, and 2015 are presented. A procedure for determining the integral emission of NO x based on the data of measurements on the route enveloping the sources under study is described. An analysis of the experimental data together with the results of a numerical simulation of air pollutant dispersion (the HYSPLIT model) provided an estimate of the total volume of NO x emitted by all sources located inside the circular road. The average emission rate of NO x according to the sources of the megacity of St. Petersburg is 57000 t/yr, which correlates satisfactorily with the official data of a municipal inventory of the sources of air pollution (62000–63 000 t/yr).  相似文献   

15.
Izvestiya, Atmospheric and Oceanic Physics - Ozone anomalies that occur in the winter–spring period in the Northern Hemisphere have been increasingly observed in recent decades not only in...  相似文献   

16.
Aitken mode atmospheric particles largely control the formation and transformation of cloud systems, which in turn have an effect on their radiative properties. In this paper, a measurement technique for the cloud condensation nuclei (CCN) activity of monodisperse particles is described and the measurement data (results) obtained for monodisperse aerosol fractions with diameters of 60, 80, and 100 nm are presented. The measurements were performed during March and April 2014 at the urban background station located in a suburban area of St. Petersburg. The CCN concentration in the water-vapor supersaturation range of 0.1–1.1% and the cloud particle activation parameters were determined. The fraction of active particles capable to serve as CCN is found to be less than 33%, which is characteristic of anthropogenic aerosols containing hydrophobic organic components. Based on the measurement data, the hygroscopicity parameter κ characterizing the chemical composition effect on condensational properties of particles has been determined. During the measurement campaign, the value of the hygroscopicity parameter varied between 0.1 and 0.8. The lower limit of κ corresponds to organic species and its higher values occurs due to presence of hygroscopically active inorganic species in particles. The average value of κ was estimated to be 0.34 ± 0.19, which is in good agreement with literature data obtained for megapolises and European continental aerosols.  相似文献   

17.
18.
Modern climatic changes for 1991–2013 in the lower 4-km layer of the atmosphere in the Moscow region are discussed based on long-term measurements using radiosondes in Dolgoprudny near Moscow and sensors installed on a high mast in Obninsk and on a television tower in Ostankino in Moscow. It is shown that at the end of the 20th century and the beginning of the 21st century the mean-annual air temperature at all heights from 2 to 4000 m increased by an average of 0.1°C per year. In recent years, the warming has slowed. Over the last two decades, long-term changes were multidirectional, depending on the season: warming in May–December, cooling in January–February, and no statistically significant changes in March and April. The probable reason for the temperature decrease in the middle of the cold period is changes in the large-scale atmospheric circulation during recent years (the negative phase of the North Atlantic Oscillation in early 2010s). In recent years, the Moscow region climate continentality has increased because of warming in summer and cooling in winter, despite the secular decreasing trend, which was noted before. Mean daily and annual warming rates in Dolgoprudny were higher than in Obninsk. The probable reason is the northward construction expansion and the strengthening of the Moscow heat island. The highest annual temperature amplitude is recorded at heights of 200–300 m.  相似文献   

19.
Izvestiya, Atmospheric and Oceanic Physics - The anthropogenic heat flux associated with energy consumption for heating buildings has a significant impact on the heat balance of urbanized areas and...  相似文献   

20.
Evidence has been found for the teleconnection of Indian Ocean Dipole mode (IOD) events in the southern high latitude sea surface pressure field, although the mechanisms that might lead to such far-reaching links remain unresolved. Based on the teleconnection pattern between IOD and the climate anomaly in the upper troposphere, we propose one such mechanism here: the energy propagation theory of the atmospheric planetary wave. Ray traces of the atmospheric planetary waves suggest that the energy propagation of the waves could be responsible for the teleconnection between IOD and tropospheric climate anomalies in southern high latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号