首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据榆林气象站1961—2016年逐年及该地区某一风电观测场2007年逐时最大风速资料,在探讨最大风速突变点的基础上,利用极值Ⅰ型分析法及1 d、5 d设计风速取样法对风电观测场50 a一遇最大风速进行估算,同时参考《建筑结构荷载规范》,最终确定风电观测场最大风速的取值。结果表明:榆林气象站历年最大风速有下降趋势,并在1980年发生突变;利用突变点前风电观测场最大风速序列计算的50 a一遇风速修正后,得到的结果与建筑结构荷载规范的值相近,可以互相验证,最终确定50 a一遇最大风速为253 m/s,相应风压为04 kN/m2。  相似文献   

2.
根据榆林气象站1961—2016年逐年及该地区某一风电观测场2007年逐时最大风速资料,在探讨最大风速突变点的基础上,利用极值Ⅰ型分析法及1d、5d设计风速取样法对风电观测场50a一遇最大风速进行估算,同时参考《建筑结构荷载规范》,最终确定风电观测场最大风速的取值。结果表明:榆林气象站历年最大风速有下降趋势,并在1980年发生突变;利用突变点前风电观测场最大风速序列计算的50a一遇风速修正后,得到的结果与建筑结构荷载规范的值相近,可以互相验证,最终确定50a一遇最大风速为25.3m/s,相应风压为0.4kN/m^2。  相似文献   

3.
风电场不同高度的50年一遇最大和极大风速估算   总被引:6,自引:0,他引:6       下载免费PDF全文
风电场50年一遇最大和极大风速是决定风电机组极限载荷的关键指标, 也是风电项目开发中机组选型和经济评估的关键指标之一。该文重点从气象学角度, 结合我国风电项目开发的实际情况, 提出5 d最大10 min平均风速取样法, 用Ⅰ型极值概率分布来估算风电场不同高度50年一遇最大风速; 以附近气象站长期的历年最大风速及与风电项目内测风塔同期的逐日最大风速资料, 修正所得结果。再以实测到的大风速段的最大阵风系数, 推算风电场不同高度50年一遇的极大风速。并利用内蒙古巴彦淖尔市乌兰伊力更风电场300 MW项目1年的实测风资料及内蒙古乌拉特中旗气象站的测风资料, 估算乌兰伊力更风电场内不同高度上50年一遇的最大和极大风速。  相似文献   

4.
本文利用ECMWF的1979-2012年空间分辨率为0.75°×0.75°的REA每日4个时次的多层10 min平均风速格点资料,提取了研究区域(18°-26.25°N,108.75°-118.5°E)内的年最大风速序列,并对其年际变化特征和空间分布特征进行了分析。在分析空间分布特征的基础上,分类选择代表格点,建立最大风速序列,分别利用第Ⅰ型极值分布和皮尔逊Ⅲ型分布方法估算了各个代表格点不同高度层在不同重现水平下的最大风速极值,并比较两种方法估算结果的异同。在东南沿海年最大风速从近海到沿海岸线地带,再到内陆山地丘陵依次递减。在最大风速估算中发现两种估算方法所得结果相近,都可用于最大风速估算。估算结果与实际最大风速序列极大值相比较偏小,在实际应用中可按适线原则通过调整参数获得更准确的估算结果。通过分析估算方法和估算结果,为确定工程设计最大风速提供了新的思路和方法,有利于提高气象部门的专业气象服务质量水平。  相似文献   

5.
估算灾区最大风速的一种方法   总被引:2,自引:0,他引:2  
林务荣  何华庆 《气象》1996,22(11):53-57
根据邮电等部门的长途明线线路的有关杆线强度设计的资料,得出了在无气象观测记录的灾区估算最大风速的方法和经验公式,并给出了实例。  相似文献   

6.
朱伯伦 《气象》1983,9(7):19-19
贵州铜仁属于山区,地形复杂,沟谷纵横,高差悬殊,大量的农田在沟谷中,气象站的光照条件无法代表全县的情况。因此,研究无气象记录地点光照条件的估算方法,对合理利用山区气候资源很有必要。 一、日照时数的估算 如果一个县内各地的纬度差异不大,天气条件也基本相同。不同地形条件下的日照差异主要是遮蔽度不同造成的。设t_B为某一地点的晴天日照时数(以下简称为地形日照时数),气象站的地形日照时数为t_A,则在晴天条件下两地日照时数的比值K=t_B/t_A,某地点的实际日照时数为:  相似文献   

7.
最大风速变化特征及再现期极值估算   总被引:3,自引:1,他引:3  
鹿翠华 《气象科技》2010,38(3):399-402
利用枣庄市1971~2008年各月10 min最大风速资料,对枣庄最大风速统计分析。发现38年中枣庄春季、夏季、秋季、冬季和全年的最大风速都呈下降趋势,年最大风速以每10年1.47 m/s的幅度下降,冬季下降最快,达到每10年降低1.67 m/s,夏季、秋季降低幅度很接近,都小于年平均最大风速降幅,春季最大风速下降最慢,且最大风速极值主要出现在春季。枣庄各月最大风速变化曲线呈递减的"两峰两谷"形。用柯尔莫哥洛夫方法对耿贝尔分布函数进行拟合优度的检验,其显著水平达到0.05,因此利用耿贝尔分布函数估算出枣庄未来若干年的最大风速极值,以满足生产建设规划与设计中对最大风速极值的要求。  相似文献   

8.
50a一遇最大风速是风电场风机型号选择的决定因子之一,同时,对风电场的安全运行影响很大,贵州地形复杂,拟建风电场均为山区,50a一遇最大风速的计算尤为复杂。该文在参考国内各种常用的极值计算方法的基础上,采用《建筑结构载荷规范》风压表估算方法及5d最大风速取样法对盘县黄茅坪、惠水摆榜2座测风塔进行50a一遇最大风速估算,探讨山区不同地形条件下最大风速的变化规律。  相似文献   

9.
非汛期不同重现期最大风速是沿海(江)岸堤防设计标准、工程安全性和投资成本估算的一个重要参数。文中基于上海崇明、宝山、南汇、奉贤和金山5个沿海(江)岸气象站历史风速观测资料和横沙岛测风塔10 m高度逐日最大风速资料,采用极值I型分布估算了上海地区沿海(江)岸非汛期(1—5月和10—12月)各风向不同重现期最大风速。结果表明,上海地区沿海(江)岸非汛期的最大风速以W风最大,SW风最小。沿海(江)岸非汛期50 a一遇最大风速为23.3—28.3 m/s,小于上海地区基准风速(30.0 m/s)。各地非汛期不同风向50 a一遇最大风速的最大差值为3.4—8.1 m/s,同一重现期各地沿海(江)岸10 m高度最大风速极值也相差较大。崇明区域非汛期沿海(江)岸最大风速最大,其次是南汇区域,宝山区域最小。上海地区最大风速一般都出现在沿海地带,其分布与上海实际地理、地表状况相符。  相似文献   

10.
利用吉林省1973—2008年共计36a来40个观测站的逐月最大风速资料,分析了吉林省逐年最大风速的变化趋势及概率分布特征,结果表明:吉林省逐月最大风速在4月份达到最大值并且年最大风速以4月份出现的次数最多;近36a来吉林省年最大风速为明显的阶段性下降趋势,年最大风速从1989年开始发生趋势突变;年最大风速值和最大风速50a一遇的极值重现水平自西北向东南逐渐减小。  相似文献   

11.
基于1991—2020年高要地区风速和风向观测数据,利用极值Ⅰ型概率分布拟合方法估算该地区不同重现期的最大风速、极大风速以及基本风压。结果表明:高要站近30年年均大风日数为93 d,主要出现在5—9月;10、50和100年重现期的最大风速分别是23.29、30.19和31.11 m/s,极大风速分别为30.3、39.3和43.0 m/s。以B类地表为例,通过幂指数方程和贝努利公式等方法推算出高要地区各高度各重现期最大风速和基本风压,各重现期风速和风压能为高要大型工程项目抗风设计提供参考。  相似文献   

12.
分别从质量控制级别、有效数据完整率、是否均一等方面考虑,选取安徽省51个气象站1981—2020年逐日10 min最大风速和2006—2020年逐日极大风速资料,基于最大风速资料应用阵风系数法构建1981—2005年极大风速,得到1981—2020年极大风速的长时间序列数据;对风速资料进行拟合适度检验,估算了安徽省不同重现期最大风速和极大风速的时间变化以及空间分布,并对极大风速序列延长前后重现期估算情况进行了对比。结果表明:(1)利用阵风系数法构建的极大风速数据可信,可为因缺少长时间序列的极大风速观测而无法进行50年或者更长重现期估算提供参考;(2) 1981—2020年安徽省历年最大风速强度为12.38 m/s,极大风速强度为20.55 m/s,均为皖南低矮山区的风速值较低,沿江西部及江淮之间中部处于相对大值区;(3) 30年重现期最大风速为12.09~27.23 m/s,50年为12.64~29.01 m/s,均是石台站最小,桐城站最大;30年重现期的极大风速为23.51~39.56 m/s,50年为24.58~41.93 m/s,均为池州站最小,桐城站最大;(4)短期的观测资料会...  相似文献   

13.
利用对数正态分布计算年最大风速   总被引:1,自引:0,他引:1  
周正强 《气象》1987,13(12):28-31
本文提出用对数正态分布计算年最大风速,这种方法与当前使用的计算方法主要的不同是,它具有较完善的子样检验方法,并且能计算最大风速的容忍上限。  相似文献   

14.
通过分析位于复杂地形的南湫、黑崖子和干河口风电场测风塔70 m高度的风速、风向分布特征及风速预报的误差特性,基于卡尔曼滤波方法建立了预报风速的订正模型,对预报风速误差进行了订正。结果表明,南湫、黑崖子和干河口风电场的有效风速时数占全年风速时数的百分比分别达90. 9%,85. 06%和82. 93%;各风电场有效风速时数存在显著的时间差异,夏、秋季有效风速时数最大;南湫、黑崖子和干河口分别可达29. 65%,27. 19%和23. 24%;风速日变化特征差异明显,夏季南湫、黑崖子和干河口风速日变化分别呈多峰多谷(或双峰双谷)、单峰单谷、双峰单谷的分布特征;夏到秋季,南湫主导风向为东南风,黑崖子由偏东风转换为偏西风,干河口主导风向稳定为东风或偏东风。风速阵性特征有明显的季节差异,9月黑崖子、干河口风速的阵性变化较6月强,南湫风速的阵性变化6月比9月强。北京快速更新循环数值预报系统(BJ-RUC)对复杂地形风电场风速预报能力存在局限性,主要表现在预报风速的阵性变化相对较小、风速偏大;经卡尔曼滤波方法订正后,数值模式对风速的阵性预报能力增强,预测风速威布尔分布的形状参数和尺度参数逼近实况风速的分布参数,实况风速和预测风速相关系数最大可提高约15%;预报风速的绝对误差、均方根误差也得到了改善,可降至1. 30 m·s~(-1)和1. 66 m·s~(-1)。  相似文献   

15.
利用位于福建省漳浦县赤湖镇海岸线观测塔提供的三个登陆台风的四层超声风速仪观测数据,在数据质量控制基础上,研究不同下垫面条件下阵风因子与平均风速、观测高度,以及阵风时距的关系;在此基础上,给出不同时距最大平均风速之间的转换系数,从而在不同研究机构采用的表征登陆台风强度的1 min、2 min和10 min最大平均风速之间建立联系,并和WMO的推荐值进行比较。计算结果表明:粗糙度对阵风因子有显著影响,对转换系数影响较小;本文给出的2~10 min最大平均风速之间的转换系数和WMO的推荐值相差不大,表明计算结果是合理的,以及在相似地貌条件下利用WMO的推荐值进行强度估计具有一定的可靠性。  相似文献   

16.
地形雨估算初探   总被引:2,自引:0,他引:2  
史凤坡 《气象》1996,22(2):29-32
阐述了在弧状山体有水汽输入的流域或地区,通过地形参数,控空资料及其有关气象因子、来估算地形雨的方法和步骤,从而使地形雨这一分量,可自大气环流,天气系统的降水量中分离出来。  相似文献   

17.
李汉惠  俞善贤  顾强民 《气象》1986,12(9):24-24
电接风速仪是目前国内普遍使用的测风仪,但它只能自动记录平均风速,瞬间极大风速必须依靠人工及时读取才能得到。这不但不够方便,而且极大风速漏测的可能性极大;而达因风速仪却能可靠地记录瞬间极大风速。本文从分析电接风速仪的最大风速与达因风速仪的极大风速之间的关系入手,提出了一个由电接风速仪的最大风速推测极大风速的简易计算方法。经实际验证,效果较好。 一、基本资料与对比分析 玉环县坎门气象站位于浙江东南沿海,拔海高度96.2m。该站装有EL型电接风速仪和达因风  相似文献   

18.
吴琼  徐卫民 《干旱气象》2019,37(3):384-391
以鄱阳湖区典型湖陆山地复杂地形为试验区域,采用WRF模式MRF和MYJ两种边界层参数化方案,对2010年该区域近地层风速进行高时空分辨率预报,并结合3个测风塔观测资料对预报结果进行检验。结果表明:WRF模式对鄱阳湖区70 m高度风速预报效果较好,预报值能够较好地反映近地层风速变化,且边界层MRF方案预报效果略好于MYJ方案。地形对近地层风速预报影响明显,地形相对平坦的吉山预报效果最好,而地形最为复杂的狮子山预报效果相对较差。不同强度的近地层风速预报效果差异较大,5~25 m·s^-1风速段预报效果明显优于0~5 m·s^-1风速段。位相偏差是造成鄱阳湖区近地层风速预报误差的主要来源,其贡献率在60%以上,而系统偏差和振幅偏差的误差贡献率相对较小,通过线性订正方法可在一定程度上提高该区域风速预报效果。  相似文献   

19.
复杂地形低风速气象特征分析   总被引:2,自引:0,他引:2  
唐敬  蔡旭晖  康凌  张宏升  王雷 《气象科学》2011,31(4):542-547
利用13个地面站和1个100 m气象塔的全年实测资料分析湖南中北部丘陵地区中尺度范围的低风速气象特征。结果表明:(1)该区域低风速出现频率高,小于15 m/s的风速出现频率年均达416%;(2)低风速与地形情况密切相关,区域内西部山地的低风速出现频率明显高于东部平原地区;(3)低风速的出现具有日变化特点,典型出现时间段是夜间至次日上午;(4)低风速条件下10 min平均风向多出现大角度变化的情况,60°以上的风向变化频率可达20%~30%。(5)水平风向标准差在低风速情况下明显增大,但观测仪器性能会对小风结果产生影响。  相似文献   

20.
利用虎林市1971-2010年各月10 min最大风速资料,对虎林市最大风速进行统计分析,发现40 a虎林市春季、夏季、秋季、冬季和年最大风速每10 a以1.65 m/s的幅度下降,冬季下降最快,达到每10 a下降1.90 m/s,春季、夏季降低幅度很接近,都小于年最大风速降幅,夏季最大风速下降最慢,且最大风速极值主要出现在秋季和春季。虎林市各月最大风速变化曲线呈"递减的两峰一谷"型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号