首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulations of the one-dimensional Newtonian four-body problem have been conducted for the special case in which the bodies are distributed symmetrically about the centre of mass. Simulations show a great similarity between this problem and the one-dimensional Newtonian three-body problem. As in that problem the orbits can be divided into three different categories which form well-defined regions on a Poincaré section: there is a region of quasiperiodic orbits about a Schubart-like periodic orbit, there is a region of fast-scattering encounters and in between these two regions there is a chaotic scattering region. The Schubart-like periodic orbit's stability to perturbation is studied. It is apparently stable in one-dimension but is unstable in three-dimensions.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

2.
In the n-body problem a central configuration is formed if the position vector of each particle with respect to the center of mass is a common scalar multiple of its acceleration vector. We consider the problem: given a collinear configuration of four bodies, under what conditions is it possible to choose positive masses which make it central. We know it is always possible to choose three positive masses such that the given three positions with the masses form a central configuration. However for an arbitrary configuration of four bodies, it is not always possible to find positive masses forming a central configuration. In this paper, we establish an expression of four masses depending on the position x and the center of mass u, which gives a central configuration in the collinear four body problem. Specifically we show that there is a compact region in which no central configuration is possible for positive masses. Conversely, for any configuration in the complement of the compact region, it is always possible to choose positive masses to make the configuration central.  相似文献   

3.
We consider the problem: given a collinear configuration of n bodies, find the masses which make it central. We prove that for n ≤ 6, each configuration determines a one-parameter family of masses (after normalization of the total mass). The parameter is the center of mass when n is even and the square of the angular velocity of the corresponding circular periodic orbit when n is odd. The result is expected to be true for any n. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Periodic Orbits of a Collinear Restricted Three-Body Problem   总被引:6,自引:0,他引:6  
In this paper we study symmetric periodic orbits of a collinear restricted three-body problem, when the middle mass is the largest one. These symmetric periodic orbits are obtained from analytic continuation of symmetric periodic orbits of two collinear two-body problems.  相似文献   

5.
We present a special model which is a caricature of the collinear three-body problem. Near triple-collision behavior for the model is governed by the collision manifold. We study the bifurcations of the dynamics on this manifold as we vary the ratio of masses. Both analytic and numerical results are presented.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

6.
In this paper we have found secular solutions at the triangular equilibrium point in the generalized photogravitational restricted three body problem. The problem is generalised in the sense that smaller primary is an oblate spheroid and more massive primary as source of radiation. The triangular point has long or short-period retrograde elliptical orbits. The critical mass parameter decreases with the increase in oblateness and radiation pressure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
In this article we study for first time the motion of charged particleswith neglected mass under the influence of Lorentz and Coulomb forces offour moving celestial bodies. For this problem we give the equations ofmotion, variational equations and energy integral. Also we give theequilibrium configurations demonstrating an extensive numericalinvestigation of the equilibrium points with comments about theirappearance.  相似文献   

8.
We study the existence of invariant tori in a neighbourhood of the collinear equilibrium points of the planar three-body problem. To this end some properties of the normal form of the Hamiltonian reduced to the 4D central manifold are proved. Using this normal form, we show that the nondegeneracy conditions of KAM theorem are satisfied for all positive masses, including the 2:1 resonance case. The evaluation of the conditions is done numerically.  相似文献   

9.
Periodic Solutions in the Ring Problem   总被引:3,自引:0,他引:3  
In this article we investigate the symmetric periodic motions of a particle of negligible mass in a coplanar N-body system consisting of ν=N-1 peripheral equidistant bodies of equal masses and a central body with a different mass. This system which we refer to as the ring problem, is a simple model approximating the planar problem of N bodies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Asymptotic motion to collinear equilibrium points of the restricted three-body problem with oblateness is considered. In particular, homoclinic and heteroclinic solutions to these points are computed. These solutions depart asymptotically from an equilibrium point and arrive asymptotically at the same or another equilibrium point and are important reference solutions. To compute an asymptotic orbit, we use a fourth order local analysis, numerical integration and standard differential corrections.  相似文献   

11.
We determine the parameters of a passively gravitating body that satisfy the conditions for the existence of Lagrangian solutions in a plane restricted three-body problem. A example is given.  相似文献   

12.
In the three-body problem, where two bodies are punctual and the third is rigid, we prove the existence of some relative equilibrium configurations where the rigid body is either an homogeneous ball, an oblate or an elongated ball. In particular, we found conditions of relative equilibrium of Euler and Lagrange type and several families of relative equilibrium configurations, where the triangle of the two punctual bodies and the mass center of the rigid body is isosceles or having unequal sides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The equilibrium points of the relativistic restricted three-body problem are considered. The stability of the triangular points is determined and contrary to recent results of other authors a region of linear stability in the parameter space is obtained. The positions of the collinear points are approximated by series by expansions and their stability is similarly determined. It is found that these are always unstable.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

14.
A systematic numerical exploration of the families of asymmetric periodic orbits of the restricted three-body problem when a) the primary bodies are equal and b) for the Earth-Moon mass ratio, is presented. Decades families of asymmetric periodic solutions were found and three of the simplest ones, in the first case, and ten of the second one are illustrated. All of these families consist of periodic orbits which are asymmetric with respect to x-axis while are simple symmetric periodic orbits with respect to y-axis (i.e. the orbit has only one perpendicular intersection at half period with y-axis). Many asymmetric periodic orbits, members of these families, are calculated and plotted. We studied the stability of all the asymmetric periodic orbits we found. These families consist, mainly, of unstable periodic solutions but there exist very small, with respect to x, intervals where these families have stable periodic orbits. We also found, using appropriate Poincaré surface of sections, that a relatively large region of phase space extended around all these stable asymmetric periodic orbits shows chaotic motion.  相似文献   

15.
The following theorem is proved. THEOREM.For any n2, the set of collinear relative equilibria classes of the n-body problem generates by analytical continuation a total of n!(n+3)/2 relative equilibria classes of the n+1 body problem.Together with Arenstorf's results we state a general theorem for the 4 body problem with 3 arbitrary masses and 1 inferior mass.Research supported in part by NSF grant MCS-78-00395 A01.Paper presented at the 1981 Oberwolfach Conference on Mathematical Methods in Celestial Mechanics.  相似文献   

16.
In the photogravitational restricted three-body problem, the role of theradiation-pressure is reviewed. By the analytical considerations, the existence of the `spatial' equilibrium points is analysed. In order to avoid the unknown parameters of the infinitesimal body, for the two component stars an analytical function 2 =f(1 ) is established.In contrast to results given by other authors, here only one pair of suchpoints is found. A numerical simulation for RW Monocerotis is undertakenand it is found L 6(–0.055; 0; +1.07) and L 7(–0.055; 0; –1.07).  相似文献   

17.
We describe global bifurcations from the libration points of non-stationary periodic solutions of the restricted three body problem. We show that the only admissible continua of non-stationary periodic solutions of the planar restricted three body problem, bifurcating from the libration points, can be the short-period families bifurcating from the Lagrange equilibria L 4, L 5. We classify admissible continua and show that there are possible exactly six admissible continua of non-stationary periodic solutions of the planar restricted three body problem. We also characterize admissible continua of non-stationary periodic solutions of the spatial restricted three body problem. Moreover, we combine our results with the Déprit and Henrard conjectures (see [8]), concerning families of periodic solutions of the planar restricted three body problem, and show that they can be formulated in a stronger way. As the main tool we use degree theory for SO(2)-equivariant gradient maps defined by the second author in [25].This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

18.
We consider perturbations of the Kepler problem that are symmetric with respect to the origin and admit a first integral of motion which is also symmetric with respect to the origin. It has been proved that each circular solution of the unperturbed problem gives rise to a periodic solution of the perturbed system.  相似文献   

19.
The galactic dynamical system expressed by a third-order axisymmetric polynomial potential is investigated numerically by computing periodic solutions. We define as Sthe compact set of initial conditions generating bounded motions, and as S p , with S p ? S, the countable set of all initial conditions generating periodic solutions. Then, we consider the subsets S s p and S a p of S p , where S s p S a p = S p , S s p S a p = Ø, the first of which corresponds to symmetric periodic solutions, and the second to asymmetric solutions. Then, we approximate the set S s p , leaving treatment of the set S a p of asymmetric solutions for a future publication. The set S s p is known to be dense in S (‘Last Geometric Theorem of Poincar;’, Birkhoff, 1913). Using a computer programme capable to locate all elements of the set S s p that generate symmetric periodic solutions that re-enter after intersecting the axis of symmetry from 1 to ntimes. The results of the approximation of S s p in the total domain and in the sample sub-domains of zooming, we present in graphical form as family curves in the (x, C) plane. The solutions located with the largest periods re-enter after 440 galaxy revolutions while the families calculated fully (initial conditions, period, energy, stability co-efficient) include solutions that re-enter after 340 galaxy revolutions. To advance further the approximation of the set S s p thus obtained, we applied the same procedure inside eight sub-domains of the domain Sinto which we ‘zoomed’ through selection of finer search steps and double maximum periods. The family curves thus calculated presented in the (x, C) plane do not intersect anywhere in some sub-domains and their pattern resembles that of laminar flow. In other sub-domains, however, we found family curves from which branching families emanate. The concepts of completeand non-completeapproximation of S s p in sub-domains of laminar and sub-domains with branching family curves, respectively, is introduced. Also, the concept of basic family of order1, 2, ..., n, are defined. The morphology of individual periodic solutions of all families is investigated, and the types of envelopes found are described. The approximate set S s p was also checked by computing Poincar; sections for energy values corresponding to the mean energy range of the eight sub-domains of zooming mentioned above. These sections show that most parts of the compact domain in Sgenerating non-periodic but bounded solutions correspond to with well-shaped tori that intersect the x-axis, a fact that implies that dominant to exclusive type of periodic solutions are the symmetric ones with two normal crossings of this axis. The presence of non-symmetric periodic solutions as well as of chaotic regions is encountered. All calculations reported here were performed using the variable step R-K 8th-order direct integration and setting the allowable energy variation Δ C= |C start? C end| < 10?13. The output, consisting of many thousands of families and their properties (initial conditions, morphology, stability, etc.), is stored in a directory entitled ‘Atlas of the Symmetric Periodic Solution of the Galactic Motion Problem’.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号