首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The river ice regime is considered a sensitive indicator of climate change and within this study long term changes (in case of River Daugava starting from 1530, but for other studied rivers starting from first half of twentieth century) river ice regimes in the Baltic region have been studied. The ice cover duration on the rivers (17 rivers) in the Baltic countries and Belarus has decreased during the recent decades. In addition to this, long term observational records of ice break on the rivers of the studied region exhibit a pattern of periodic changes in the intensity of ice regime. Both the ice regime and the seasonal river discharge are shown to be strongly influenced by large-scale atmospheric circulation processes over North Atlantic that manifests through close correlation with North Atlantic Oscillation index.  相似文献   

2.
Global North Atlantic Oscillation (NAO) oceanic precipitation features in the latter half of the twentieth century are documented based on the intercomparison of multiple state-of-the-art precipitation datasets and the analysis of the NAO atmospheric circulation and SST anomalies. Most prominent precipitation anomalies occur over the ocean in the North Atlantic, where in winter a “quadrupole-like” pattern is found with centers in the western tropical Atlantic, sub-tropical Atlantic, high-latitude eastern Atlantic and over the Labrador Sea. The extent of the sub-tropical and high-latitude center and the amount of explained variance (over 50%) are quite remarkable. However, the tropical Atlantic center is probably the most intriguing feature of this pattern apparently linking the NAO with ITCZ variability. In summer, the pattern is “tripole-like” with centers in the eastern Mediterranean Sea, the North Sea/Baltic Sea and in the sub-polar Atlantic. In the eastern Indian Ocean, the correlation is positive in winter and negative in summer, with some link to ENSO variability. The sensitivity of these patterns to the choice of the NAO index is minor in winter while quite important in summer. Interannual NAO precipitation anomalies have driven similar fresh water variations in these “key” regions. In the sub-tropical and high-latitude Atlantic in winter precipitation anomalies have been roughly 15 and 10% of climatology per unit change of the NAO, respectively. Decadal changes of the NAO during the last 50 years have also influenced precipitation and fresh water flux at these time-scales, with values lower (higher) than usual in the high-latitude eastern North Atlantic (Labrador Sea) in the 1960s and the late 1970s, and an opposite situation since the early 1980s; in summer the North Sea/Baltic region has been drier than usual during the period 1965–1975 when the NAO was generally positive.  相似文献   

3.
The anomalous climatic variability of the Western Mediterranean in summer, its relationships with the large scale climatic teleconnection modes and its feedbacks from some of these modes are the targets of this study. The most important trait of this variability is the recurrence of warm and cold episodes, that take place at 2–4 year intervals, and which are monitored in the Western Mediterranean Index. We find that the Western Mediterranean events are part of a basin scale mode, and are related to the previous spring atmospheric anomalies. These anomalies are related mainly to the Pacific North America teleconnection pattern and the North Atlantic Oscillation, but also to a number of other climatic modes, connected with the previous two, as the Southern Oscillation, the Indian Core Monsoon and the Scandinavian teleconnection pattern. We identify the main spatial and temporal traits of the Western Mediterranean summer variability, the physical mechanisms at play in the generation of the events and their impacts. Considering the Atlantic Ocean, the Mediterranean events influence the sea surface temperature in the southeastern part of the North Atlantic Gyre. Additionally, they are significantly related to summer precipitation anomalies of the opposite sign in the Baltic basin (Central Germany and Poland) and near the Black Sea. We then estimate the mutual influence that the anomalous previous state of the Western Mediterranean, of the Pacific North America teleconnection pattern and of the North Atlantic Oscillation have on their summer conditions using a simple stochastic model. As the summer Western Mediterranean events have an influence on a part of the Baltic basin, we propose a second stochastic model in order to investigate if thereafter the Baltic basin variability will feedback on the Western Mediterranean sea surface temperature anomalies. Among the variables included in the second model are, in addition to the Western Mediterranean previous state, that of the Baltic Sea and of the Scandinavian teleconnection pattern. From each of the feedback matrices, a linear statistical analysis extracts spatial patterns whose evolution in time exhibits predictive capabilities for the Western Mediterranean evolution in summer and autumn that are above those of persistence, and that could be improved.  相似文献   

4.
Changes of Air–sea Coupling in the North Atlantic over the 20th Century   总被引:1,自引:0,他引:1  
Changes of air–sea coupling in the North Atlantic Ocean over the 20 th century are investigated using reanalysis data,climate model simulations, and observational data. It is found that the ocean-to-atmosphere feedback over the North Atlantic is significantly intensified in the second half of the 20 th century. This coupled feedback is characterized by the association between the summer North Atlantic Horseshoe(NAH) SST anomalies and the following winter North Atlantic Oscillation(NAO). The intensification is likely associated with the enhancement of the North Atlantic storm tracks as well as the NAH SST anomalies. Our study also reveals that most IPCC AR4 climate models fail to capture the observed NAO/NAH coupled feedback.  相似文献   

5.
The inter-basin teleconnection between the North Atlantic and the North Pacific ocean–atmosphere interaction is studied using a coupled ocean–atmosphere general circulation model. In the model, an idealized oceanic temperature anomaly is initiated over the Kuroshio and the Gulf Stream extension region to track the coupled evolution of ocean and atmosphere interaction, respectively. The experiments explicitly demonstrate that both the North Pacific and the North Atlantic ocean–atmosphere interactions are intimately coupled through an inter-basin atmospheric teleconnection. This fast inter-basin communication can transmit oceanic variability between the North Atlantic and the North Pacific through local ocean-to-atmosphere feedbacks. The leading mode of the extratropical atmospheric internal variability plays a dominant role in shaping the hemispheric-scale response forced by oceanic variability over the North Atlantic and Pacific. Modeling results also suggest that a century (two centuries) long observations are necessary for the detection of Pacific response to Atlantic forcings (Atlantic response to Pacific forcing).  相似文献   

6.
Climate fluctuations in the North Atlantic Ocean have wide-spread implications for Europe, Africa, and the Americas. This study assesses the relative contribution of the long-term trend and variability of North Atlantic warming using EOF analysis of deep-ocean and near-surface observations. Our analysis demonstrates that the recent warming over the North Atlantic is linked to both long-term (including anthropogenic and natural) climate change and multidecadal variability (MDV, ~50–80 years). Our results suggest a general warming trend of 0.031 ± 0.006°C/decade in the upper 2,000 m North Atlantic over the last 80 years of the twentieth century, although during this time there are periods in which short-term trends were strongly amplified by MDV. For example, MDV accounts for ~60% of North Atlantic warming since 1970. The single-sign basin-scale pattern of MDV with prolonged periods of warming (cooling) in the upper ocean layer and opposite tendency in the lower layer is evident from observations. This pattern is associated with a slowdown (enhancement) of the North Atlantic thermohaline overturning circulation during negative (positive) MDV phases. In contrast, the long-term trend exhibits warming in tropical and mid-latitude North Atlantic and a pattern of cooling in regions associated with major northward heat transports, consistent with a slowdown of the North Atlantic circulation as evident from observations and confirmed by selected modeling results. This localized cooling has been masked in recent decades by warming during the positive phase of MDV. Finally, since the North Atlantic Ocean plays a crucial role in establishing and regulating the global thermohaline circulation, the multidecadal fluctuations discussed here should be considered when assessing long-term climate change and variability, both in the North Atlantic and at global scales.  相似文献   

7.
A teleconnection is analyzed which exists between long-term variations of temperature and precipitation in St. Petersburg in March and April and North Atlantic and European atmospheric zonal circulation during the 20th century. It is shown that current climate warming in the region is almost entirely explained by a significant enhancement of warm advection of Atlantic air onto the continent.  相似文献   

8.
Marine proxy evidence linking decadal North Pacific and Atlantic climate   总被引:1,自引:1,他引:0  
Decadal- to multidecadal variability in the extra-tropical North Pacific is evident in 20th century instrumental records and has significant impacts on Northern Hemisphere climate and marine ecosystems. Several studies have discussed a potential linkage between North Pacific and Atlantic climate on various time scales. On decadal time scales no relationship could be confirmed, potentially due to sparse instrumental observations before 1950. Proxy data are limited and no multi-centennial high-resolution marine geochemical proxy records are available from the subarctic North Pacific. Here we present an annually-resolved record (1818–1967) of Mg/Ca variations from a North Pacific/Bering Sea coralline alga that extends our knowledge in this region beyond available data. It shows for the first time a statistically significant link between decadal fluctuations in sea-level pressure in the North Pacific and North Atlantic. The record is a lagged proxy for decadal-scale variations of the Aleutian Low. It is significantly related to regional sea surface temperature and the North Atlantic Oscillation (NAO) index in late boreal winter on these time scales. Our data show that on decadal time scales a weaker Aleutian Low precedes a negative NAO by several years. This atmospheric link can explain the coherence of decadal North Pacific and Atlantic Multidecadal Variability, as suggested by earlier studies using climate models and limited instrumental data.  相似文献   

9.
20世纪北大西洋温盐环流的年代际变化试评估   总被引:10,自引:0,他引:10  
根据相对丰富的大气器测资料,综合前人对有限的海洋资料的诊断分析,从北大西洋涛动(NAO)变率、表层海温(SST)变率、格陵兰海和拉布拉多海的深对流活动长期变化等不同角度,对20世纪大洋温盐环流(Thermohaline Circulation,THC)变率进行了试评估.结果表明:(1)19世纪末以来,大西洋温盐环流的变化可分为4个时期:1900年以前的一段时期,THC较强;1904年到1930年,THC较弱;1931年到1972年,THC较强;1973年至1995年,THC较弱,目前则又有所增强.(2)与THC的变化相联系,大西洋主要气候要素的变化,相互间存在着某种协调关系,THC强,NAO弱,北大西洋北部SST升高,格陵兰海的对流活动增强,拉布拉多海的对流活动则减弱.  相似文献   

10.
利用1880—1999年中国东部35站的观测降水资料、英国Hadley中心的海温和海平面气压资料以及IPCC第4次评估报告(AR4)中20世纪气候模拟试验(20C3M)的模式输出结果,对IPCCAR4中22个耦合模式所模拟的我国东部夏季降水的年代际变化情况以及太平洋年代际涛动(PDO)和北大西洋涛动(NAO)的年代际变化情况进行了分析。结果显示,这些模式对20世纪我国东部夏季降水年代际变化的模拟结果并不理想,但对降水在20世纪70年代中期前后的突变具有一定的模拟能力。其中IAP_FGOALSL_0_G可以大致模拟出20世纪70年代中期前后降水型的突变特征,而BCCR_BCM2_0和UKMO_HadGEM1则可以模拟出华北地区降水在20世纪70年代中期之后减少的现象。对于引起我国东部夏季降水年代际变化的重要因子PDO和NAO,模式对它们年代际变化的模拟效果略好于降水。多数模式都可以模拟出PDO和NAO的空间模态,其中CNRM_CM3和UKMO_HadGEM1对PDO年代际变化(8 a以上)的模拟与实际情况比较相似,并可以模拟出20世纪70年代中期之后PDO由负位相转变为正位相的情况,而模式UKMO_HadGEM1也对NAO的年代际变化以及1980年以来不断加强的趋势模拟较好。  相似文献   

11.
12.
20世纪两次全球增暖事件的比较   总被引:11,自引:1,他引:11  
20世纪20年代和70年代全球出现了两次突变增暖,本文分析比较了这两次全球增暖的起源地,空间分布特点,影响范围,以及北半球增温和降温最大地区的气温变化与其相对应的大气环流变化的联系等.发现,第一次全球增暖始于北半球新地岛西北、冰岛及以北的极地地区,主要增暖区在北大西洋、格陵兰岛、冰岛和北半球中、高纬大陆地区,主要增暖季节是夏季.第二次全球增暖最早可能始于南半球南印度洋海盆及南极大陆地区,增暖中心有明显向北半球方向移动的倾向并广泛影响到全球热带、副热带海洋,没有明显的区域和季节增暖差异;北半球第二次增暖比南半球约晚10年,主要增温区在东亚大陆和北美西部,主要增暖季节在冬季.分析还发现,20世纪北半球增暖最强的东亚大陆、北美西北部和降温显著的冰岛、格陵兰岛、北大西洋以及中北太平洋等地的气温变化与其相应的大气环流系统的异常变化关系密切.  相似文献   

13.
Recent studies have suggested that sea surface temperature (SST) is an important source of variability of the North Atlantic Oscillation (NAO). Here, we deal with four basic aspects contributing to this issue: (1) we investigate the characteristic time scales of this oceanic influence; (2) quantify the scale-dependent hindcast potential of the NAO during the twentieth century as derived from SST-driven atmospheric general circulation model (AGCM) ensembles; (3) the relevant oceanic regions are identified, corresponding SST indices are defined and their relationship to the NAO are evaluated by means of cross spectral analysis and (4) our results are compared with long-term coupled control experiments with different ocean models in order to ensure whether the spectral relationship between the SST regions and the NAO is an intrinsic mode of the coupled climate system, involving the deep ocean circulation, rather than an artefact of the unilateral SST forcing. The observed year-to-year NAO fluctuations are barely influenced by the SST. On the decadal time scales the major swings of the observed NAO are well reproduced by various ensembles from the middle of the twentieth century onward, including the negative state in the 1960s and part of the positive trend afterwards. A six-member ECHAM4-T42 ensemble reveals that the SST boundary condition affects 25% of total decadal-mean and interdecadal-trend NAO variability throughout the twentieth century. The most coherent NAO-related SST feature is the well-known North Atlantic tripole. Additional contributions may arise from the southern Pacific and the low-latitude Indian Ocean. The coupled climate model control runs suggest only the North Atlantic SST-NAO relationship as being a true characteristic of the coupled climate system. The coherence and phase spectra of observations and coupled simulations are in excellent agreement, confirming the robustness of this decadal-scale North Atlantic air–sea coupled mode.  相似文献   

14.
The fourth version of the atmosphere-ocean general circulation (AOGCM) model developed at the Institut Pierre-Simon Laplace (IPSL-CM4) is used to investigate the mechanisms influencing the Arctic freshwater balance in response to anthropogenic greenhouse gas forcing. The freshwater influence on the interannual variability of deep winter oceanic convection in the Nordic Seas is also studied on the basis of correlation and regression analyses of detrended variables. The model shows that the Fram Strait outflow, which is an important source of freshwater for the northern North Atlantic, experiences a rapid and strong transition from a weak state toward a relatively strong state during 1990–2010. The authors propose that this climate shift is triggered by the retreat of sea ice in the Barents Sea during the late twentieth century. This sea ice reduction initiates a positive feedback in the atmosphere-sea ice-ocean system that alters both the atmospheric and oceanic circulations in the Greenland-Iceland-Norwegian (GIN)-Barents Seas sector. Around year 2080, the model predicts a second transition threshold beyond which the Fram Strait outflow is restored toward its original weak value. The long-term freshening of the GIN Seas is invoked to explain this rapid transition. It is further found that the mechanism of interannual changes in deep mixing differ fundamentally between the twentieth and twenty-first centuries. This difference is caused by the dominant influence of freshwater over the twenty-first century. In the GIN Seas, the interannual changes in the liquid freshwater export out of the Arctic Ocean through Fram Strait combined with the interannual changes in the liquid freshwater import from the North Atlantic are shown to have a major influence in driving the interannual variability of the deep convection during the twenty-first century. South of Iceland, the other region of deep water renewal in the model, changes in freshwater import from the North Atlantic constitute the dominant forcing of deep convection on interannual time scales over the twenty-first century.  相似文献   

15.
A number of recent studies have used model projections to investigate how the North Atlantic environment in which tropical storms develop, as well as hurricane activity itself, might change in a warming world. However, accurate projection of the North Atlantic environment in the future requires, at a minimum, accurate representation of its mean state and variability in the current climate. Here we examine one metric of Atlantic basin tropical cyclone variability—its well-documented association with the El Ni?o-Southern Oscillation (ENSO)—in reanalyses and Intergovernmental Panel of Climate Change (IPCC) 4th Assessment Report (AR4) twentieth century and Atmospheric Model Intercomparison Project simulations. We find that no individual model provides consistently good representation of ENSO-related variability in the North Atlantic for variables relevant to hurricane activity (e.g. vertical wind shear, genesis potential). Model representation of the ENSO influence is biased due to both inaccurate representation of ENSO itself and inaccurate representation of the response to ENSO within the North Atlantic. Among variables examined, ENSO impacts on vertical wind shear and potential intensity were most poorly simulated. The multi-model ensemble mean representation of North Atlantic environmental response to ENSO is better matched with reanalysis than most individual AR4 models; however, this mean response still possesses some considerable bias. A few models do provide comparable or slightly better simulation of these ENSO-North Atlantic teleconnections than the multi-model ensemble average; however, for both the multi-model mean and the well performing models, good simulation of the ENSO-related variability of genesis potential within portions of the North Atlantic does not stem from accurate representation of the ENSO-related variability of the individual environmental variables that comprise genesis potential (e.g. vertical wind shear, potential intensity).  相似文献   

16.
The features of the spatiotemporal variability of the sea level in the North and Baltic seas during the periods of formation of major Baltic inflows are investigated using the analysis of satellite altimetry data. It is demonstrated that dramatic drops in the sea level between the Baltic and North seas are observed during a few weeks before major inflows. A process of intensive inflows of the North Sea water to the Baltic Sea is accompanied not only by horizontal motions but also by vertical ones manifested in the increase in convergent flows in the North Sea and divergent flows in the Baltic Sea. A pronounced feature of the low-frequency dynamics of water of the North and Baltic seas is its wave structure. In both seas, low-frequency waves with the periods of 14–36 days propagate with the eastern component of the phase velocity along the isobaths and are identified as barotropic topographic Rossby waves. Phase velocities and lengths of low-frequency waves in the Baltic Sea are smaller by several times than those in the North Sea. Using the data of the analysis of meteorological information, a resonance-wave mechanism of generation of major Baltic inflows is studied.  相似文献   

17.
The Initiation of the "Little Ice Age" in Regions Round the North Atlantic   总被引:3,自引:0,他引:3  
The "Little Ice Age" was the most recent period during which glaciers extended globally, their fronts oscillating about advanced positions. It is frequently taken as having started in the sixteenth or seventeenth century and ending somewhere between 1850 and 1890, but Porter (1981) pointed out that the "Little Ice Age" may 'have begun at least three centuries earlier in the North Atlantic region than is generally inferred'. The glacial fluctuations of the last millennium have been traced in the greatest detail in the Swiss Alps, where the "Little Ice Age" is now seen as starting with advances in the thirteenth century, and reaching an initial culmination in the fourteenth century. In the discussion here, evidence from Canada, Greenland, Iceland, Spitsbergen and Scandinavia is compared with that from Switzerland. Such comparisons have been facilitated by improved methods of calibrating radiocarbon dates to calendar dates and by increasing availability of evidence revealed during the current retreat phase. It is concluded that the "Little Ice Age" was initiated before the early fourteenth century in regions surrounding the North Atlantic.  相似文献   

18.
海冰模式CICE4.0与LASG/IAP气候系统模式的耦合试验   总被引:1,自引:2,他引:1  
利用美国Los Alamos国家实验室发展的最新海冰模式(CICE4.0)替代了LASG/IAP气候系统模式(FGOALS_g1.1)中的海冰模式(CSIM4), 形成新的耦合模式。在此基础上, 利用新的耦合模式对20世纪中后期的全球气候进行了模拟, 来检验CICE4.0对耦合模式中海冰和海洋模拟结果的改进。结果表明CICE4.0对于FGOALS_g1.1的极地气候模拟有一定改进作用, 主要表现在:(1) 南北极海冰边缘碎冰区显著减少; (2) 南大洋海表温度和海冰的模拟明显改善, 分布特征与观测非常吻合。但是新耦合模式也存在如下不足: (1) 北大西洋海冰相对偏多, 北大西洋经圈翻转环流大大减弱, 这主要是由于北大西洋海表面温度的冷误差造成的; (2) 南北极大气环流场的模拟无明显改善。此外, 本文还比较了采用不同短波辐射方案对于耦合模拟结果的影响, 结果表明, 相对于CCSM3短波辐射方案, Delta-Eddington方案模拟的海表面温度偏冷, 海冰厚度偏厚, 北大西洋经圈翻转环流略有偏弱。  相似文献   

19.
A network of varve and dendrochronological time series that provide annual resolution of Boreal tree growth conditions and Arctic snow pack and melt variability were used to investigate the imprint of the Atlantic Multidecadal Oscillation (AMO) on continental hydroclimatic variability in northeastern and northern North America from 1550 to 1986 AD. The hydroclimatic proxies show a coherent, AMO-like spectral pattern active since the late sixteenth and the early eighteenth century in the Canadian Arctic and southeastern Boreal regions, respectively. Positive AMO phases are associated with more intense spring runoff in the Arctic and with longer growth season and increased summer moisture availability in the southeastern boreal forest. These results offer new insights about the widespread response of North American hydroclimate to low frequency changes in North Atlantic sea surface temperatures.  相似文献   

20.
北大西洋臭氧极小值和北太平洋极大值及其相互关系   总被引:2,自引:0,他引:2  
利用1979~2002年TOMS卫星观测资料,采用臭氧总量纬向偏差和区域强迫的分析方法,研究北大西洋东北部大气臭氧低值与北太平洋西北部臭氧高值的季节变化过程和相互关系.研究表明,(1)北大西洋东北部存在一个大气臭氧极小值,年平均臭氧总量比纬向平均值低20 DU以上,冬季低50 DU以上; 北太平洋西北部存在一个大气臭氧极大值,年平均臭氧总量比纬向平均值高35 DU以上,冬季高70 DU以上.(2)上述两个地区大气臭氧的季节变化具有很强的区域特征,区域大气动力学输送和化学过程对上述两个地区大气臭氧季节变化的强迫分别为50.3%和42.6%.(3)上述两个地区大气臭氧纬向偏差的季节变化间存在很好的反相关,相关系数达到-0.98,说明其臭氧区域强迫之间存在良好的关系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号