首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have measured 87Sr/86Sr and 143 Nd/144 Nd isotope ratios in different batches and aliquots of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1 and GSP-1 by thermal ionisation mass spectrometry. In addition, we also analysed the eight Max-Planck-Institut-Dingwell (MPI-DING) reference glasses. Nearly all isotope ratios obtained in the different aliquots and batches agree within uncertainty limits indicating excellent homogeneity of the USGS powders and the MPI-DING glasses. With the exception of GSP-2, the new USGS RMs are also indistinguishable from the ratios found in the original USGS RMs (87Sr/86Sr: 0.704960, 0.704958 (BCR-1, -2), 0.703436, 0.703435 (BHVO-1, -2), 0.703931, 0.703931 (AGV-1, -2); 143 Nd/144 Nd: 0.512629, 0.512633 (BCR-1, -2), 0.512957, 0.512957 (BHVO-1, -2); 0.512758, 0.512755 (AGV-1, -2)). This means that for normalisation purposes in Sr and Nd isotope geochemistry BCR-2, BHVO-2 and AGV-2 can well replace BCR-1, BHVO-1 and AGV-1 respectively.  相似文献   

2.
Different batches of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2, DTS-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1, DTS-1 and GSP-1 have been analysed by isotope dilution using thermal ionisation mass spectrometry (ID-TIMS) and by multi-ion counting spark source mass spectrometry (MIC-SSMS). The concentrations of K, Rb, Sr, Ba and the rare earth elements were determined with overall analytical uncertainties of better than 1% (ID-TIMS) and 3% (MIC-SSMS). The analyses of different aliquots and batches of BCR-2, BHVO-2, AGV-2 and GSP-2, respectively, agree within 1%, i.e. approximately the analytical uncertainties of the data. This indicates an homogeneous distribution of the trace elements in these RMs. Differences in element concentrations of up to 17% in different aliquots of the depleted RM DTS-2 are outside the analytical uncertainty of our data. They may be attributed to a slightly heterogeneous distribution of trace elements in this dunite sample. Our trace element data for BCR-2, BHVO-2, AGV-2 and GSP-2 agree within about 3% with preliminary reference values published by the USGS. They also agree within 1-6% with those of the original RMs BCR-1, BHVO-1, AGV-1 and GSP-1. Large compositional differences are found between DTS-2 and DTS-1, where the concentrations of K, Rb, Sr and the light REE differ by factors of 2 to 24.  相似文献   

3.
Data are reported for rare earth elements (REE) in three geological glass reference materials (BIR-1G, BHVO-2G and BCR-2G) using a UV (266 nm) laser ablation ICP-MS system and the classical (HF-HClO4) acid decomposition method, followed by conventional nebulisation ICP-MS. External calibration of laser ablation analyses was performed using NIST SRM reference materials with internal standardisation using 29Si and 44Ca. Replicate analyses of reference basaltic glasses yielded an analytical precision of 1-5% (RSD) for all the elements by solution ICP-MS and 1-8% (RSD) by laser ablation ICP-MS. The relative differences between the REE concentrations measured by solution and laser ablation ICP-MS compared with the reference values were generally less than 11 % for most elements. The largest deviations occurred for La determined by solution ICP-MS in BIR-1G. The results of both solution and laser ablation ICP-MS agreed well, generally better than 7%, with the exception of La, Pr and Sm in BIR-1G. The measured REE laser ablation data for BIR-1G, BHVO-2G and BCR-2G agreed with the previously published data on these basaltic reference glasses, within a range of 0-10% for most elements. No significant influences were observed for the predicted spectral interferences on some REE isotopes in the analysis of basaltic glasses.  相似文献   

4.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g-1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.  相似文献   

5.
Molybdenum concentrations in eleven USGS geochemical reference materials AGV-1, BCR-1, BHVO-1, BIR-1, DNC-1, DTS-1, G-2, GSP-1, MAG-1, PCC-1 and W-2 were measured by isotope dilution thermal ionisation mass spectrometry (ID-TIMS). In every case but one, the concentrations determined in this study were significantly lower than the current consensus values. Molybdenum concentrations determined by ID-TIMS are inherently more accurate and precisions may be up to an order of magnitude higher than those measured by other analytical techniques.  相似文献   

6.
We present data on the concentration, the isotope composition and the homogeneity of boron in NIST silicate glass reference materials SRM 610 and SRM 612, and in powders and glasses of geological reference materials JB-2 (basalt) and JR-2 (rhyolite). Our data are intended to serve as references for both microanalytical and wet-chemical techniques. The δ11 B compositions determined by N-TIMS and P-TIMS agree within 0.5% and compare with SIMS data within 2.5%. SIMS profiles demonstrate boron isotope homogeneity to better than δ11 B = 2% for both NIST glasses, however a slight boron depletion was detected towards the outermost 200 μm of the rim of each sample wafer. The boron isotope compositions of SRM 610 and SRM 612 were indistinguishable. Glasses produced in this study by fusing JB-2 and JR-2 powder also showed good boron isotope homogeneity, both within and between different glass fragments. Their major element abundance as well as boron isotope compositions and concentrations were identical to those of the starting composition. Hence, reference materials (glasses) for the in situ measurement of boron isotopes can be produced from already well-studied volcanic samples without significant isotope fractionation. Oxygen isotope ratios, both within and between wafers, of NIST reference glasses SRM 610 and SRM 612 are uniform. In contrast to boron, significant differences in oxygen isotope compositions were found between the two glasses, which may be due to the different amounts of trace element oxides added at ten-fold different concentration levels to the silicate matrix.  相似文献   

7.
Sr isotopic compositions and Rb / Sr ratios of three USGS glasses (BHVO-2G, BIR-1G, BCR-2G) are identical to those of the original USGS reference materials. NKT-1G and TB-1G give values of 0.70351 and 0.70558, respectively. Pb isotopic ratios were measured by the standard-sample bracketing technique on an MC-ICP-MS, which give results that are comparable in accuracy and reproducibility to double spike analyses. However, assessment of the reproducibility of the technique is hampered by inhomogeneous contamination of all USGS reference materials analysed. This contamination is likely to be the reason why the USGS glasses do not all have the same Pb isotopic composition as their unfused originals. Powdered glasses, distributed for characterisation of the glasses by bulk analytical techniques, do not all have the same Pb isotopic compositions as the solid glass material, and can therefore not be used for this purpose.  相似文献   

8.
Cadmium, gadolinium and samarium concentrations were determined in seven geochemical reference materials by isotope dilution thermal ionisation mass spectrometry. The results for all three elements in BCR-1 are in excellent agreement with the compiled values as well as the literature values dete-mined by isotope dilution mass spectrometry. The agreement with compiled values on the other material is generally good except for Cd where the values for BHVO-1, BIR-1, DNC-1 and W-2 need to be revised.  相似文献   

9.
We present a concerted international effort to cross-calibrate five synthetic Th isotope reference materials (UCSC Th "A", OU Th "U", WUN, IRMM-35 and IRMM-36), and six rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2, USGS BHVO-2, LV18) using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We then compare our new values with a compilation of literature mass spectrometric data for these reference materials and derive recommended "consensus"230Th/232Th values for each. We also present isotope dilution U and Th concentration data for four rock reference materials (UCSC TML, Icelandic ATHO, USGS BCR-2, USGS W-2).  相似文献   

10.
地质样品中Pb同位素分析的高效酸淋洗流程   总被引:1,自引:0,他引:1  
针对地质样品的Pb同位素分析提出了一种简化淋洗法, 以去除样品碎样过程引起的污染.相对前人的淋洗法而言, 简化淋洗法不仅能够得到地质样品中准确的Pb同位素组成, 而且降低了全流程本底并提高了样品处理效率.利用多接收等离子体质谱分析了5个美国地质调查局(USGS) 国际标准参考物质(AGV-1、AGV-2、BHVO-2、BCR-2和G-2) 中的Pb同位素组成, 结合前人的研究, 结果表明第一、二代USGS参考物质在制样过程中均受到不同程度的污染.第一代标准在碎样过程受到的污染比碎样环境造成的普通铅污染严重, 而第二代则相反.淋洗后各种参考物质分别具有相近且均一的Pb同位素组成, 表明对岩石粉末样进行溶样前的淋洗有助于获得样品真实的Pb同位素组成.   相似文献   

11.
We found that the suppression of signals for 88Sr, 140Ce and 238U in rock solution caused by rock matrix in ICP-MS (matrix effects) was reduced at high power operation (1.7 kW) of the ICP. To make the signal suppression by the matrix negligible, minimum dilution factors (DF) of the rock solution for Sr, Ce and U were 600, 400 and 113 at 1.1, 1.4 and 1.7 kW, respectively. Based on these findings, a rapid and precise determination method for Rb, Sr, Y, Cs, Ba, REE, Pb, Th and U using FI (flow injection)-ICP-MS was developed. The amount of the sample solution required for FI-ICP-MS was 0.2 ml, so that 1.8 mg sample was sufficient for analysis with a detection limit of several ng g-1. Using this method, we determined the trace element concentrations in the USGS rock reference materials, DTS-1, PCC-1, BCR-1 and AGV-1, and the GSJ rock reference materials, JP-1, JB-1, -2, -3, JA-1, -2 and -3. The reproducibilities (RSD %) in replicate analyses (n=5) of BCR-1, AGV-1, JB-1, -2, -3, JA-1, -2, and -3 were < 6 %, and typically 2.5%. The difference between the average concentrations of this study for BCR-1 and those of the reference values were < 2%. Therefore, it was concluded that the method can give reliable data for trace elements in silicate rocks.  相似文献   

12.
We present a multi-element technique for the simultaneous determination of twelve trace elements in geological materials by combined isotope dilution (ID) sector field inductively coupled plasma-mass spectrometry (SF-ICP-MS) following simple sample digestion. In addition, the concentrations of fourteen other trace elements have been obtained using the ID determined elements as internal standards. This method combines the advantages of ID (high precision and accuracy) with those of SF-ICP-MS (multi-element capability, fast sample processing without element separation) and overcomes the most prevailing drawbacks of ICP-MS (matrix effects and drift in sensitivity). Trace element concentration data for BHVO-1 (n = 5) reproduced to within 1–3% RSD with an accuracy of 1–2% relative to respective literature values for ID values and 2–3% for all other values. We have applied this technique to the analysis of seventeen geological reference materials from the USGS, GSJ and IAG. The sample set also included the new USGS reference glasses BCR-2G, BHVO-2G and BIR-1G, as well as the MPI-DING reference glasses KL2-G and ML3B-G, and NIST SRM 612. Most data agreed within 3–4% with respective literature data. The concentration data for the USGS reference glasses agreed in most cases with respective data of the original rock powder within the combined standard uncertainty of the method (2–3%), except the U concentration of BIR-1G, which showed a three times higher concentration compared to BIR-1.  相似文献   

13.
A method has been developed for the rapid chemical separation and highly reproducible analysis of the rare earth elements (REE) by isotope dilution analysis by means of a multiple collector inductively coupled plasma mass spectrometer (MC-ICP-MS). This technique is superior in terms of the analytical reproducibility or rapidity of analysis compared with quadrupole ICP-MS or with thermal ionization mass spectrometric isotope dilution techniques. Samples are digested by standard hydrofluoric-nitric acid-based techniques and spiked with two mixed spikes. The bulk REE are separated from the sample on a cation exchange column, collecting the middle-heavy and light REE as two groups, which provides a middle-heavy REE cut with sufficient separation of the light from the heavier REE to render oxide interferences trivial, and a Ba-free light REE cut. The heavy (Er-Lu), middle (Eu-Gd), and light REE (La-Eu) concentrations are determined by three short (1 to 2 min) analyses with a CETAC Aridus desolvating nebulizer introduction system. Replicate digestions of international rock standards demonstrate that concentrations can be reproduced to <1%, which reflects weighing errors during digestion and aliquotting as inter-REE ratios reproduce to ≤0.2% (2 SD). Eu and Ce anomalies reproduce to <0.15%. In addition to determining the concentrations of polyisotopic REE by isotope dilution analysis, the concentration of monoisotopic Pr can be measured during the light REE isotope dilution run, by reference to Pr/Ce and Pr/Nd ratios measured in a REE standard solution. Pr concentrations determined in this way reproduce to <1%, and Pr/REE ratios reproduce to <0.4%. Ce anomalies calculated with La and Pr also reproduce to <0.15% (2 SD). The precise Ce (and Eu) anomaly measurements should allow greater use of these features in studying the recycling of materials with these anomalies into the mantle, or redox-induced effects on the REE during recycling and dehydration of oceanic lithosphere, partial melting, metamorphism, alteration, or sedimentation processes. Moreover, this technique consumes very small amounts (subnanograms) of the REE and will allow precise REE determinations to be made on much smaller samples than hitherto possible.  相似文献   

14.
The rare-earth elements (REE) and yttrium have been determined in 37 international rock and mineral reference materials. Samples were prepared using conventional rock-dissolution techniques, and the REE and yttrium were separated from the other constituents using cation-exchange chromatography. The REE (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu) and yttrium were determined simultaneously by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Results for four well-characterised USGS standard rocks agree favourably with "recommended" values and with REE determinations made previously by workers using ICP-AES, isotope dilution mass spectrometry, instrumental neutron activaton analysis and X-ray fluorescence spectrometry.
Les éléments de terres rares (TR) et yttrium ont été dosés dans 37 échantillons internationaux de réféence. Les échantillons ont été décomposés par dissolution acide et les TR séparés par résine échangeuse de cations. Les TR (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu) et yttrium ont été dosés simultanément par la spectrométrie d'émission-plasma inductif. Les résultats obtenus pour quatre échantillons de référence bien charactérisés de I'USGS se comparent favorablement avec ceux obtenus par la spectrométrie d'émission-plasma, la dilution isotopique, I'activation neutronique et par la spectrométrie d'é fluorescence-X.  相似文献   

15.
A combination of EMPA, sensitive high resolution ion microprobe (SHRIMP II) and/or LA-ICP-MS techniques was used to measure the concentration of selenium (Se) in NIST SRM 610, 612, 614 and a range of reference materials. Our new compiled value for the concentration of Se in NIST SRM 610 is 112 ± 2 μg g−1. The concentration of Se in NIST SRM 612, using NIST SRM 610 for calibration, determined using LA-ICP-MS (confirmed using SHRIMP II) was 15.2 ± 0.2 μg g−1. The concentration of Se in NIST SRM 614, using LA-ICP-MS was 0.394 ± 0.012 μg g−1. LA-ICP-MS determination of Se in synthetic geological glasses BCR-2G, BIR-1G, TB-1G and the MPI-DING glasses showed a range in concentrations from 0.062 to 0.168 μg g−1. Selenium in the natural glass, VG2, was 0.204 ± 0.028 μg g−1.  相似文献   

16.
Trace amounts (from nanogram to microgram levels) of bromine and iodine were determined by inductively coupled plasma-mass spectrometry (ICP-MS) in twenty-three geochemical reference materials issued by the GSJ, USGS, IAEA etc. The pyrohydrolysis technique was used to separate bromine and iodine from samples analysed in the form of powder. The accuracy and precision of the experimental values were assessed by the comparative analysis of well established reference materials such as USGS AGV-1, BCR-1 and IGGE GBW07312. The measured values agreed well with reported values within a 10% error range. We also report reliable new data for these elements in these geochemical reference materials.  相似文献   

17.
The authors measured Pb isotope compositions of seven USGS rock reference standards, i.e. AGV-1, AGV-2, BHVO-1, BHVO-2, BCR-2, BER-1/1 and W-2, together with NBS 981 using a micromass isoprobe multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) at the University of Queensland. 203Tl-205Tl isotopes were used as an internal standard to correct for mass-dependant isotopic fractionation. The results for both NBS 981 and USGS rock standards AGV-1 and BHVO-1 are comparable to or better than double- and triple-spike TIMS (thermal ionization mass spectrometry) data in precision. The data for BHVO-2 and, to a lesser extent, AGV-2 and BCR-2 are reproducibly higher for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb than double-spike TIMS data in the literature. The authors also obtained the Pb isotope data for BIR-1/1 and W-2, which may be used as reference values in future studies. It is found that linear correction for Pb isotopic fractionation is adequate with the results identical to those corre  相似文献   

18.
We have developed a rapid and accurate method to determine Zr, Nb, Hf and Ta (denoted as HFSE) in geological samples by inductively coupled plasma-mass spectrometry fitted with a flow injection system (FI-ICP-MS). The method involves sample decomposition by HF followed by HF dissolution of HFSE coprecipitated with insoluble M and Ca fluoride residues formed during the initial HF attack. This HF solution was directly nebulized into an ICP mass spectrometer. An external calibration curve method and an isotope dilution method (ID) were applied for the determination of Nb and Ta, and of Zr and Hf, respectively. Recovery yields of HFSE were > 96% for peridotite, basalt and andesite compositions, apart from Zr and Hf for peridotite (> 85%). No matrix effects for either signal intensities of HFSE or isotope ratios of Zr and Hf were observed in basalt, andesite and peridotite solutions down to a dilution factor of 100. Detection limits in silicate rocks were 40, 2, 1 and 0.1 ng g-1 for Zr, Nb, Hf and Ta, respectively. This technique required only 0.1 ml of sample solution, and thus is suitable for analysing small and/or precious samples such as meteorites, mantle peridotites and their mineral separates. We also present newly determined data for the Zr, Nb, Hf and Ta concentrations in USGS silicate reference materials DTS-1, PCC-1, BCR-1, BHVO-1 and AGV-1, GSJ reference materials JB-1, -2, -3, JA-1, -2 and -3, and the Smithsonian reference Allende powder.  相似文献   

19.
Niobium and Ta concentrations in MPI‐DING and USGS (BCR‐2G, BHVO‐2G, BIR‐1G) silicate rock glasses and the NIST SRM 610–614 synthetic soda‐lime glasses were determined by 193 nm ArF excimer laser ablation and quadrupole ICP‐MS. Measured Nb and Ta values of MPI‐DING glasses were found to be consistently lower than the recommended values by about 15% and 25%, respectively, if calibration was undertaken using commonly accepted values of NIST SRM 610 given by Pearce et al. Analytical precision, as given by the 1 s relative standard deviation (% RSD) was less than 10% for Nb and Ta at concentrations higher than 0.1 μg g?1. A significant negative correlation was found between logarithmic concentration and logarithmic RSD, with correlation coefficients of ‐0.94 for Nb and ‐0.96 for Ta. This trend indicates that the analytical precision follows counting statistics and thus most of the measurement uncertainty was analytical in origin and not due to chemical heterogeneities. Large differences between measured and expected Nb and Ta in glasses GOR128‐G and GOR132‐G are likely to have been caused by the high RSDs associated with their very low concentrations. However, this cannot explain the large differences between measured and expected Nb and Ta in other MPI‐DING glasses, since the differences are normally higher than RSD by a factor of 3. Count rates for Nb and Ta, normalised to Ca sensitivity, for the MPI‐DING, USGS and NIST SRM 612–614 glasses were used to construct calibration curves for determining NIST SRM 610 concentrations at crater diameters ranging from 16 (im to 60 μm. The excellent correlation between the Nb/Ca1μgg‐1 signal (Nb represents the Nb signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Nb concentration, and between the Ta/Ca1μg g‐1 signal (where Ta represents the Ta signal intensity; Ca1μg g‐1 represents the Ca sensitivity) and Ta concentration (R2= 0.9992–1.00) in the various glass matrices suggests that matrix‐dependent fractionation for Nb, Ta and Ca was insignificant under the given instrumental conditions. The results confirm that calibration reference values of Nb and Ta in NIST SRM 610 given by Pearce et al. are about 16% and 28% lower, respectively. We thus propose a revision of the preferred value for Nb from 419.4 ± 57.6 μg g?1 to 485 ± 5 μg g?1 (1 s) and for Ta from 376.6 ± 77.6 μg g?1 to 482 ± 4 μg g?1 (Is) in NIST SRM 610. Using these revised values for external calibration, most of the determined average values of MPI‐DING, USGS and NIST SRM 612–614 reference glasses agree within 3% with the calculated means of reported reference values. Bulk analysis of NIST SRM 610 by standard additions using membrane desolvation ICP‐MS gave Nb = 479 ± 6 μg g?1 (1 s) and Ta = 468 ± 7 μg g?1 (1 s), which agree with the above revised values within 3%.  相似文献   

20.
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号