首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary. The algorithm of Dawson & Weaver for modelling electromagnetic induction effects in a thin sheet at the surface of a uniform earth is modified to permit the use of a layered earth model. The theory is developed in Fourier space in terms of the toroidal and poloidal transfer functions instead of with the Green's function approach which was used by Dawson & Weaver. The integral equation for the surface electric field and most of the integral formulae for the derived field components are the same as before, except for the inclusion of additional integral the kernel of which has to be calculated numerically with the aid of fast Hankel transforms. The accuracy of the results is tested by comparing solutions with those obtained from a related 2-D algorithm and finally an example of 3-D modelling is presented.  相似文献   

2.
3.
The diffraction of P, S and Rayleigh waves by 3-D topographies in an elastic half-space is studied using a simplified indirect boundary element method (IBEM). This technique is based on the integral representation of the diffracted elastic fields in terms of single-layer boundary sources. It can be seen as a numerical realization of Huygens principle because diffracted waves are constructed at the boundaries from where they are radiated by means of boundary sources. A Fredholm integral equation of the second kind for such sources is obtained from the stress-free boundary conditions. A simplified discretization scheme for the numerical and analytical integration of the exact Green's functions, which employs circles of various sizes to cover most of the boundary surface, is used.
The incidence of elastic waves on 3-D topographical profiles is studied. We analyse the displacement amplitudes in the frequency, space and time domains. The results show that the vertical walls of a cylindrical cavity are strong diffractors producing emission of energy in all directions. In the case of a mountain and incident P, SV and SH waves the results show a great variability of the surface ground motion. These spatial variations are due to the interference between locally generated diffracted waves. A polarization analysis of the surface displacement at different locations shows that the diffracted waves are mostly surface and creeping waves.  相似文献   

4.
Summary. The potential, U , about a point electrode, at the surface of a layered ground in which there is an heterogeneity embedded, satisfies the integral equation:
Here, U * and σ* are the corresponding quantities for the potential and conductivity without the heterogeneity. The integral is taken over the surface of the heterogeneity, ∂ U /∂ n is the normal derivative (in the direction of the outward normal) of U , and G is a Green's function.
Solutions to this equation can readily be found by using the Galerkin method of solving integral equations. The solutions of this equation when the heterogeneity is a sphere or a cylinder in a uniform ground or beneath a conductive overburden are the most readily found.
When the solution of the integral has been found for the potential it is a simple matter to calculate the apparent resistivity or chargeability for any electrode configuration.  相似文献   

5.
The Born approximation is applied to the modelling of the propagation of deeply turning longperiod body waves through heterogeneities in the lowermost mantle. We use an exact Green's function for a spherically symmetric earth model that also satisfies the appropriate boundary conditions at internal boundaries and the surface of the earth. The scattered displacement field is obtained by a numerical quadrature of the product of the Green's function, the exciting wavefield and structural perturbations. We study three examples: scattering of longperiod P waves from a plume rising from the coremantle boundary (CMB), generation of longperiod precursors to PKIKP by strong, localized scatterers at the CMB, and propagation of corediffracted P waves through largescale heterogeneities in D". The main results are as follows: (1) the signals scattered from a realistic plume are small with relative amplitudes of less than 2 per cent at a period of 20 s, rendering plume detection a fairly difficult task; (2) strong heterogeneities at the CMB of appropriate size may produce observable longperiod precursors to PKIKP in spite of the presence of a diffraction from the PKP B caustic; (3) corediffracted P  waves ( P diff) are sensitive to structure in D" far off the geometrical ray path and also far beyond the entry and exit points of the ray into and out of D"; sensitivity kernels exhibit ringshaped patterns of alternating sign reminiscent of Fresnel zones; (4) P diff also shows a nonnegligible sensitivity to shear wave velocity in D"; (5) down to periods of 40 s, the Born approximation is sufficiently accurate to allow waveform modelling of P diff through largescale heterogeneities in D" of up to 5 per cent.  相似文献   

6.
For flows associated with small strains, the rheology of rocks is described by the linear integral (having a memory) law, which reduces to the Andrade law in the case of constant stress. A continental lithosphere with such a rheology is overstable. Thermoconvective waves that propagate through the lithosphere with minimal attenuation have a period of about 200  Myr and a wavelength of the order of 400  km. An initial temperature point-concentrated perturbation in the lithosphere excites amplitude-modulated thermoconvective waves (wave packets). When the initial perturbation occurs in a finite area, thermoconvective waves propagate outwards from this area, and thermoconvective oscillations (standing waves) are established inside the area. Thermoconvective waves induce oscillations of the Earth' surface, accompanied by sedimentation and erosion, and can be considered as a mechanism for the distribution of sediments on continental cratons.  相似文献   

7.
Summary. Analytical results are presented for Love waves generated by sudden changes of the rate of advance of a curved rupture front in an inclined fault plane that is embedded in an elastic half-space. The boundary condition at the surface of the half-space approximates the presence of an overlying layer. The calculation consists of two parts. First, ray theory is used to calculate far-field approximations to the horizontally polarized wavefields which are emitted when the speed of the rupture front suddenly changes. These fields can be expressed as products of emission coefficients (which govern the angular dependence) and propagation terms. Secondly, a representation integral for the Love wave over a surface enclosing the rupture front is constructed, using the emitted signal and an appropriate Green's function. This integral is evaluated asymptotically. The resulting approximate Love-wave spectrum shows an explicit dependence on the nature of the rupture process, on the rupture-front and fault-plane geometry, and on the magnitude of a sudden change in the rate of advance of the rupture front.  相似文献   

8.
An efficient inverse scattering method is developed for imaging near-surface heterogeneities using scattered surface waves. Three dimensional elastodynamic wave propagation and scattering in a laterally invariant embedding medium is considered. The Born Approximation is used and the scattered wavefield is expressed as a domain type integral representation. The computation time of Green's tensor elements is reduced by considering the radial symmetry of the medium. The method is validated by numerical tests. Ultrasonic laboratory data obtained from a scale model experiment are used for imaging the near-surface inhomogeneities caused by an epoxy-filled hole in the surface of an aluminum block. Both synthetic and the scale model tests show that the location, the actual density contrast and the depth of the inhomogeneities are reasonably well estimated.  相似文献   

9.
Summary. A new method for solving problems in three-dimensional electromagnetic induction in which the Earth is represented by a uniformly conducting half-space overlain by a surface layer of variable conductance is presented. Unlike previous treatments of this type of problem the method does not require the fields to be separated into their normal and anomalous parts, nor is it necessary to assume that the anomalous region is surrounded by a uniform structure; the model may approach either an E- or a B -polarization configuration at infinity. The solution is expressed as a vector integral equation in the horizontal electric field at the surface. The kernel of the integral is a Green's tensor which is expressed in terms of elementary functions that are independent of the conductance. The method is applied to an illustrative model representing an island near a bent coastline which extends to infinity in perpendicular directions.  相似文献   

10.
An effective and accurate technique for the numerical solution of 2-D electromagnetic scattering problems with 3-D sources is presented. This solution introduces a set of the usual boundary integral equations and uses a scalar Green's function. In this scalar version, the unknowns of the problem are the boundary values of the longitudinal fields and their normal derivatives in the Fourier domain. A generalization of the usual boundary integral formulation enables us to handle a large class of models composed of piecewise homogeneous domains, including contiguous domains, multiply-connected domains and unbounded domains. This formulation involves the solution of a system of linear equations, and results in a significant saving in computation time in comparison with other rigorous methods.
  The requirements for the numerical implementation of this solution are described in detail. Numerical tests were carried out using the important example of electromagnetic tomography. The specific symmetry properties of the response function in this case are illustrated. Numerical accuracy is verified over a large frequency range, up to 1  MHz.  相似文献   

11.
A variety of methods exist for interpolating Cartesian or spherical surface data onto an equidistant lattice in a procedure known as gridding. Methods based on Green's functions are particularly simple to implement. In such methods, the Green's function for the gridding operator is determined and the resulting gridding solution is composed of the superposition of contributions from each data constraint, weighted by the Green's function evaluated for all output–input point separations. The Green's function method allows for considerable flexibility, such as complete freedom in specifying where the solution will be evaluated (it does not have to be on a lattice) and the ability to include both surface heights and surface gradients as data constraints. Green's function solutions for Cartesian data in 1-, 2- and 3-D spaces are well known, as is the dilogarithm solution for minimum curvature spline on a spherical surface. Here, the spherical surface case is extended to include tension and the new generalized Green's function is derived. It is shown that the new function reduces to the dilogarithm solution in the limit of zero tension. Properties of the new function are examined and the new gridding method is implemented in Matlab® and demonstrated on three geophysical data sets.  相似文献   

12.
It has been demonstrated both theoretically and experimentally that the Green's function between two receivers can be retrieved from the cross-correlation of isotropic noise records. Since surface waves dominate noise records in geophysics, tomographic inversion using noise correlation techniques have been performed from Rayleigh waves so far. However, very few numerical studies implying surface waves have been conducted to confirm the extraction of the true dispersion curves from noise correlation in a complicated soil structure. In this paper, synthetic noise has been generated in a small-scale (<1 km) numerical realistic environment and classical processing techniques are applied to retrieve the phase velocity dispersion curves, first step toward an inversion. We compare results obtained from spatial autocorrelation method (SPAC), high-resolution frequency-wavenumber method (HRFK) and noise correlation slantstack techniques on a 10-sensor array. Two cases are presented in the (1–20 Hz) frequency band that corresponds to an isotropic or a directional noise wavefield. Results show that noise correlation slantstack provides very accurate phase velocity estimates of Rayleigh waves within a wider frequency band than classical techniques and is also suitable for accurately retrieving Love waves dispersion curves.  相似文献   

13.
i
Displacements of Love waves generated by a two-dimensional point source in a layered medium have been studied earlier by Sezawa & Sato by the method of successive reflections at the boundaries. In this paper the same problem has been worked out by using Green's function. The paper deals with the study of attenuation of Love waves of low periods in the coastal region. Experimental observations show that Love waves of smaller periods can be obtained only in the island observing stations. A slight intervention of the continental boundary is sufficient to attenuate lower period Love waves giving a hint thereby that attenuation of lower periods takes place perhaps at the continental margin. Taking a simplified configuration for the continental boundary and using Green's function technique, the displacement of Love waves due to a point source has been obtained and it has been shown that attenuation of Love waves of smaller periods takes place in the continental margin due to the slope of the boundary.  相似文献   

14.
On crustal corrections in surface wave tomography   总被引:1,自引:0,他引:1  
Mantle models from surface waves rely on good crustal corrections. We investigated how far ray theoretical and finite frequency approximations can predict crustal corrections for fundamental mode surface waves. Using a spectral element method, we calculated synthetic seismograms in transversely isotropic PREM and in the 3-D crustal model Crust2.0 on top of PREM, and measured the corresponding time-shifts as a function of period. We then applied phase corrections to the PREM seismograms using ray theory and finite frequency theory with exact local phase velocity perturbations from Crust2.0 and looked at the residual time-shifts. After crustal corrections, residuals fall within the uncertainty of measured phase velocities for periods longer than 60 and 80 s for Rayleigh and Love waves, respectively. Rayleigh and Love waves are affected in a highly non-linear way by the crustal type. Oceanic crust affects Love waves stronger, while Rayleigh waves change most in continental crust. As a consequence, we find that the imperfect crustal corrections could have a large impact on our inferences of radial anisotropy. If we want to map anisotropy correctly, we should invert simultaneously for mantle and crust. The latter can only be achieved by using perturbation theory from a good 3-D starting model, or implementing full non-linearity from a 1-D starting model.  相似文献   

15.
Summary. Scattering of surface waves by lateral heterogeneities is analysed in the Born approximation. It is assumed that the background medium is either laterally homogeneous, or smoothly varying in the horizontal direction. A dyadic representation of the Green's function simplifies the theory tremendously. Several examples of the theory are presented. The scattering and mode conversion coefficients are shown for scattering of surface waves by the root of an Alpine-like crustal structure. Furthermore a 'great circle theorem'in a plane geometry is derived. A new proof of Snell's law is given for surface wave scattering by a quarter-space. It is shown how a stationary phase approximation can be used to simplify the Fourier synthesis of the scattered wave in the time domain. Finally a procedure is suggested to do 'surface wave holography'.  相似文献   

16.
Many geophysical inverse problems derive from governing partial differential equations with unknown coefficients. Alternatively, inverse problems often arise from integral equations associated with a Green's function solution to a governing differential equation. In their discrete form such equations reduce to systems of polynomial equations, known as algebraic equations. Using techniques from computational algebra one can address questions of the existence of solutions to such equations as well as the uniqueness of the solutions. The techniques are enumerative and exhaustive, requiring a finite number of computer operations. For example, calculating a bound to the total number of solutions reduces to computing the dimension of a linear vector space. The solution set itself may be constructed through the solution of an eigenvalue problem. The techniques are applied to a set of synthetic magnetotelluric values generated by conductivity variations within a layer. We find that the estimation of the conductivity and the electric field in the subsurface, based upon single-frequency magnetotelluric field values, is equivalent to a linear inverse problem. The techniques are also illustrated by an application to a magnetotelluric data set gathered at Battle Mountain, Nevada. Surface observations of the electric ( E y ) and magnetic ( H x ) fields are used to construct a model of subsurface electrical structure. Using techniques for algebraic equations it is shown that solutions exist, and that the set of solutions is finite. The total number of solutions is bounded above at 134 217 728. A numerical solution of the algebraic equations generates a conductivity structure in accordance with the current geological model for the area.  相似文献   

17.
Summary. In an earlier work, mathematical formulation on computing the electromagnetic response of an arbitrarily shaped three-dimensional inhomogeneity in a layered earth had been worked out using an integral equation technique. The method has been used to show its efficacy by computing numerical results. Introducing suitable changes of variables the secondary contributions to Green's dyadic are put in the form of convolution integrals and are computed using a digital linear filtering scheme. The matrix equation is solved for the unknown electric fields in the inhomogeneity. The scattered fields are then calculated at the surface of the Earth using the appropriate Green's dyadic. The performance of the computations has been shown by comparing the numerical results with those obtained by analogue modelling as well as by other numerical schemes. The use of digital linear filtering saves an enormous amount of computer time.
The effects of varying excitation-frequency, conductivity of the host medium and that of the overburden have been studied in detail for a horizontal loop system traversing over a two-layered earth with a prismatic inhomogeneity situated in the lower conducting half space.  相似文献   

18.
Wave propagation is studied in a general anisotropic poroelastic solid. The presence of dissipation due to fluid-viscosity as well as hydraulic anisotropy of pore permeability are also considered. Biot's theory is used to derive a system of modified Christoffel equations for the propagation of plane harmonic waves in porous media. A non-trivial solution of this system is ensured by a determinantal equation. This equation is separated into two different polynomial equations. One is the quartic equation whose roots represent the complex velocities of four attenuating waves in the medium. The other is a eighth-degree polynomial whose roots represent the vertical slowness values for the four waves propagating upward and downward in a finite porous medium. Procedure is explained to associate the numerically obtained roots with the waves propagating in the medium. The slowness surfaces of waves reflected at the boundary of the medium are computed for a realistic numerical model. The behaviours of phase velocity surfaces are analysed with the help of numerical examples.  相似文献   

19.
Based on the application of the region-matching technique, an analytical approach is presented for the scattering of plane SH waves from a shallow symmetrical V-shaped canyon, and then a series solution is derived. The analysed region is divided into an enclosed and an open region by introducing a semi-circular auxiliary boundary. In each region, the displacement field can be expressed as infinite sum of appropriate wavefunctions satisfying partial boundary conditions, respectively. The unknown coefficients can be determined by enforcing the continuity conditions in connection with the Graf's addition formula. The frequency- and time-domain responses are both evaluated and displayed for several physical parameters. From graphical results, the effects of the canyon depth on surface ground motion are conspicuous. The proposed series solutions can serve as benchmark for numerical methods, in particular for those at much higher frequencies.  相似文献   

20.
Summary. A parabolic approximation to the equation of motion of elastic waves as a sum of surface modes and discovering a parabolic approximation be applied directly to surface waves. The approximation depends on the material properties varying slowly within a wavelength, whereas surface waves may travel in a surface wave guide whose depth is of the same order of magnitude as a wavelength. This difficulty is overcome by representing the waves as a sum of surface modes and discovering a parabolic approximation for the amplitudes as a function of position on the surface. The theory is applicable to the propagation of Love or Rayleigh waves in a structure which is vertically stratified in an arbitrary way, but varies slowly in any horizontal direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号