共查询到20条相似文献,搜索用时 15 毫秒
1.
G. Handler 《Monthly notices of the Royal Astronomical Society》2001,323(2):L43-L47
We report 36.6 h of time-resolved CCD photometry of the DB white dwarf star PG 2246+121 and the discovery that it is a new pulsating variable. Analysis of our compact single-site data set allowed the detection of three mode multiplets, two triplets at 256 and 329 s, respectively, and one doublet at 286 s. The frequency splitting within those structures is exactly the same within the length and accuracy of our data set.
We argue that these multiplets are the result of non-radial g-mode pulsations, most probably of spherical degree ℓ=1, which then yields a formal stellar rotation period of 2.00±0.12 d. We suggest that the excited modes are three consecutive radial overtones of order 3–7, most likely k =4,5,6. This discovery's impact on the understanding of pulsating DB white dwarfs is discussed. 相似文献
We argue that these multiplets are the result of non-radial g-mode pulsations, most probably of spherical degree ℓ=1, which then yields a formal stellar rotation period of 2.00±0.12 d. We suggest that the excited modes are three consecutive radial overtones of order 3–7, most likely k =4,5,6. This discovery's impact on the understanding of pulsating DB white dwarfs is discussed. 相似文献
2.
3.
4.
Vincent M. Woolf C. Simon Jeffery Donald L. Pollacco 《Monthly notices of the Royal Astronomical Society》2002,329(3):497-501
We present an analysis of high-speed spectroscopy of the pulsating subdwarf B star PG 1605+072. Periodic radial motions are detected at frequencies similar to those reported for photometric variations in the star, with amplitudes of up to 6 km s−1 . Differences between relative strengths for given frequency peaks for our velocity data and previously measured photometry are probably a result of shifting of power between modes over time. Small differences in the detected frequencies may also indicate mode-shifting. We report the detection of line-shape variations using the moments of the cross-correlation function profiles. It may be possible to use the moments to identify the pulsation modes of the star. 相似文献
5.
6.
Koen O'Donoghue Kilkenny Lynas-Gray Marang & van Wyk 《Monthly notices of the Royal Astronomical Society》1998,296(2):317-328
We report the discovery of large-amplitude (∼0.25 mag) pulsations in the bright ( V =12.8) sdB star, PG 1605+072. The dominant period is 480 s, but more than 20 periods were present on at least three separate occasions. Frequency analysis of the complete data set yields more than 30 periods. A few of these are harmonics or linear combinations of the strongest modes. Excluding the latter, the periods span a range of almost 400 s, which contrasts with the typical range <20 s for most other EC 14026 stars.
Analysis of multicolour photometry limited any cool companion to being a main-sequence star of type M0 or later. Balmer line profile fitting yielded an effective temperature of 32 100±1000 K and a log g of 5.25±0.10, significantly smaller than in the other stars of the EC 14026 class, and possibly indicative of a more evolved state. The lower gravity is probably responsible for the fact that the pulsation periods and amplitudes are respectively much longer and larger than in other stars of the class. This star is an obvious target for asteroseismological investigation using a multilongitude photometric campaign. 相似文献
Analysis of multicolour photometry limited any cool companion to being a main-sequence star of type M0 or later. Balmer line profile fitting yielded an effective temperature of 32 100±1000 K and a log g of 5.25±0.10, significantly smaller than in the other stars of the EC 14026 class, and possibly indicative of a more evolved state. The lower gravity is probably responsible for the fact that the pulsation periods and amplitudes are respectively much longer and larger than in other stars of the class. This star is an obvious target for asteroseismological investigation using a multilongitude photometric campaign. 相似文献
7.
8.
M. D. Reed J. R. Eggen A.-Y. Zhou D. M. Terndrup S. L. Harms D. An M. A. Hashier 《Monthly notices of the Royal Astronomical Society》2006,369(3):1529-1536
We continue our programme of extended single-site observations of pulsating subdwarf B (sdB) stars and present the results of extensive time-series photometry to resolve the pulsation spectra for use in asteroseismological analyses. PG 0154+182, HS 1824+5745 and HS2151+0857 were observed at the MDM Observatory during 2004 and 2005. Our observations are sufficient to resolve the pulsations of all three target stars. We extend the number of known frequencies for PG 0154+182 from one to six, confirm that HS 1824+5745 is a monoperiodic pulsator and extend the number of known frequencies to five for HS 2151+0857. We perform standard tests to search for multiplet structure, measure amplitude variations as pertains to stochastic excitation and examine the mode density to constrain the mode degree ℓ. 相似文献
9.
C. Simon Jeffery Don Pollacco 《Monthly notices of the Royal Astronomical Society》2000,318(4):974-982
High-speed spectroscopy of two pulsating subdwarf B stars, KPD 2109+4401 and PB 8783, is presented. Radial motions are detected with the same frequencies as reported from photometric observations and with amplitudes of ∼2 km s−1 in two or more independent modes. These represent the first direct observations of surface motion arising from multimode non-radial oscillations in subdwarf B stars. In the case of the sdB+F binary PB 8783, the velocities of both components are resolved; high-frequency oscillations are found only in the sdB star and not the F star. There also appears to be evidence for mutual motion of the binary components. If confirmed, it implies that the F-type companion is ≳1.2 times more massive than the sdB star, while the amplitude of the F-star acceleration over 4 h would constrain the orbital period to lie between 0.5 and 3.2 d. 相似文献
10.
Kilkenny O'Donoghue Koen Lynas-Gray & van Wyk 《Monthly notices of the Royal Astronomical Society》1998,296(2):329-338
The sdB star PG 1336−018 is found to be a very short-period eclipsing binary system, remarkably similar to the previously unique system HW Vir. In addition, and unlike HW Vir, the sdB star in the PG 1336 system shows rapid oscillations of the type found in the recently discovered sdB pulsators, or EC 14026 stars. The orbital period, 0.101 0174 d, is one of the shortest known for a detached binary. Analysis of photoelectric and CCD photometry reveals pulsation periods near 184 and 141 s, with semi-amplitudes of ∼0.01 and ∼0.005 mag respectively. Both oscillations might have variable amplitude, and it is probable that other frequencies are present with amplitudes ∼0.003 mag or less. The 184- and 141-s pulsations are in the range of periods predicted by models for hot horizontal-branch stars. Analysis of medium-dispersion spectrograms yields T eff =33 000±1000 K and log g =5.7±0.1 for the sdB primary star, a radial velocity semi-amplitude K 1 =78±3 km s−1 and a system velocity γ=6±2 km s−1 . Spectrograms from the IUE Final Archive give T eff =33 000±3000 K and E ( B − V )=0.05 for log g =6.0 models. The derived angular radius leads to a distance of 710±50 pc for the system, and an absolute magnitude for the sdB star of +4.1±0.2. A preliminary analysis of U , V and R light curves indicates the orbital inclination to be near 81° and the relative radii to be r 1 =0.19 and r 2 =0.205. Assuming the mass of the sdB primary to be 0.5 M⊙ leads to a mass ratio q =0.3 for the system, and indicates that the secondary is a late-type dwarf of type ∼M5. As with HW Vir, it is necessary to invoke small limb-darkening coefficients and high albedos for the secondary star to obtain reasonable fits to the observed light curves. 相似文献
11.
12.
C. Moran T. R. Marsh & V. S. Dhillon 《Monthly notices of the Royal Astronomical Society》1998,299(1):218-222
We have discovered that the white dwarf PG 2329+267 is magnetic, and, assuming a centred dipole structure, has a dipole magnetic field strength of approximately 2.3 MG. This makes it one of only approximately 4 per cent of isolated white dwarfs with a detectable magnetic field. Linear Zeeman splitting, as well as quadratic Zeeman shifts, is evident in the hydrogen Balmer sequence and circular spectropolarimetry reveals ∼10 per cent circular polarization in the two displaced σ components of Hα. We suggest from comparison with spectra of white dwarfs of known mass that PG 2329+267 is more massive than typical isolated white dwarfs, in agreement with the hypothesis that magnetic white dwarfs evolve from magnetic chemically peculiar Ap and Bp type main-sequence stars. 相似文献
13.
14.
Chris Koen 《Monthly notices of the Royal Astronomical Society》1998,300(2):567-572
The results of 37 h of high-speed photometry of KPD 2109+4401 are described. At least five periodicities in the range 182–198 s are consistently present in the observations, with amplitudes in the range 1–6 mmag. Results of simultaneous multicolour high-speed photometry with the Stiening photometer are also presented; these data could in principle be used for mode identification of the periodicities. The results of a preliminary study suggest that the pulsations may all be ℓ = 1 and 2 modes. Properties of the star are compared with those of the other EC 14026 stars. 相似文献
15.
16.
François Vuille † Pierre Brassard 《Monthly notices of the Royal Astronomical Society》2000,313(1):185-192
In each season when the DA pulsating white dwarf G29-38 has been observed, its period spectrum appears very different, but it always contains a forest of harmonics and cross-frequencies. The ratio of the amplitude of these non-linear frequencies A c to the product of the amplitudes of the corresponding parent modes A 1 A 2 has been measured. The results are compared with the predictions given by three existing theoretical models. Our analysis shows that the non-linear frequencies present in the period spectrum of G29-38 owe their presence mostly to the inelastic response of the stellar medium to the perturbation travelling through it, rather than to the non-linear response of the emergent luminous flux to the surface temperature variation. This analysis also confirms that most identified modes are ℓ=1, as previously asserted by Kleinman et al. 相似文献
17.
18.
François Vuille † 《Monthly notices of the Royal Astronomical Society》2000,313(1):170-178
An analysis of the evolution of the amplitude spectrum over many seasons of the DA pulsating white dwarf G29-38 has been performed. Neither beating nor resonant mode coupling can account for the observed appearance and disappearance of modes, although some of them clearly grow while others get damped. Therefore some unknown non-adiabatic, non-linear process has to be invoked that affects both the mode selection mechanism and the driving efficiency on a time-scale as short as a day. 相似文献
19.
François Vuille † 《Monthly notices of the Royal Astronomical Society》2000,313(1):179-184
An analysis of the phase spectrum of the DA pulsating white dwarf G29-38 over many seasons has been performed. This complements a companion paper which analyses the evolution of the temporal spectrum of G29-38.
We show that, with one exception, the relative phases of the harmonics and combination frequencies are all oscillating in phase with their parent modes. This not only suggests that these non-linear frequencies owe their presence to harmonic distortion and not to resonant mode coupling, but also explains the typical pulse shapes observed in the light curves of large-amplitude variable white dwarfs.
The one exceptional cross-frequency that does not show a phasing with its parent modes is thought to be a resonance. 相似文献
We show that, with one exception, the relative phases of the harmonics and combination frequencies are all oscillating in phase with their parent modes. This not only suggests that these non-linear frequencies owe their presence to harmonic distortion and not to resonant mode coupling, but also explains the typical pulse shapes observed in the light curves of large-amplitude variable white dwarfs.
The one exceptional cross-frequency that does not show a phasing with its parent modes is thought to be a resonance. 相似文献
20.
The results of 27 h of time series photometry of SDSS 121209.31+013627.7 are presented. The binary period established from spectroscopy is confirmed and refined to 0.061 412 d (88.43 min). The photometric variations are dominated by a brightening of about 16 mmag, lasting a little less than half a binary cycle. The amplitude is approximately the same in V , R and white light. A secondary small brightness increase during each cycle may also be present. We speculate that SDSS 121209.31+013627.7 may be a polar in a low state. 相似文献