首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During a March 1977 experiment, four systems were used to provide wave-direction information offshore of Mission Beach, CA: a synthetic aperature radar (SAR) carried aboard a NASA CV990 aircraft, a coastal imaging radar, a pressure-gauge array offshore, and aerial photography aboard two aircraft. The coastal radar, aerial photographs, and SAR provided wave images. From the coastal radar images and the aerial photographs, the direction and length of the principal wavetrains were measured by a manual analysis. The SAR images were also processed using an FFT to give two-dimensional wave spectra. The array at the Naval Ocean Systems Center (NOSC) tower was used to provide directional wave spectra. Scatter diagrams are presented, which intercompare the measurements from these four systems. In addition, radar image spectral information is compared with the array spectra. The intercomparison of the data from these four systems shows good agreement among the imaging systems. Between the imaging systems and the pressure array there is agreement for the most prominent wavetrains and disagreement for several cases where multiple wavetrains from different directions but with similar periods are present.  相似文献   

2.
An aerial photography has been used to provide validation data on sea ice near the North Pole where most polar orbiting satellites cannot cover. This kind of data can also be used as a supplement for missing data and for reducing the uncertainty of data interpolation. The aerial photos are analyzed near the North Pole collected during the Chinese national arctic research expedition in the summer of 2010(CHINARE2010). The result shows that the average fraction of open water increases from the ice camp at approximately 87°N to the North Pole, resulting in the decrease in the sea ice. The average sea ice concentration is only 62.0% for the two flights(16 and 19 August 2010). The average albedo(0.42) estimated from the area ratios among snow-covered ice,melt pond and water is slightly lower than the 0.49 of HOTRAX 2005. The data on 19 August 2010 shows that the albedo decreases from the ice camp at approximately 87°N to the North Pole, primarily due to the decrease in the fraction of snow-covered ice and the increase in fractions of melt-pond and open-water. The ice concentration from the aerial photos and AMSR-E(The Advanced Microwave Scanning Radiometer-Earth Observing System) images at 87.0°–87.5°N exhibits similar spatial patterns, although the AMSR-E concentration is approximately 18.0%(on average) higher than aerial photos. This can be attributed to the 6.25 km resolution of AMSR-E, which cannot separate melt ponds/submerged ice from ice and cannot detect the small leads between floes. Thus, the aerial photos would play an important role in providing high-resolution independent estimates of the ice concentration and the fraction of melt pond cover to validate and/or supplement space-borne remote sensing products near the North Pole.  相似文献   

3.
韩国海岸港口工程概况   总被引:1,自引:0,他引:1  
李炎保 《海洋工程》2001,19(2):61-68
简要介绍了韩国海岸和海洋环境、港口发展、海岸和港口工程的有关机构和团体,并综述其近年来海岸动力方面研究的课题和成果。内容包括海洋动力因素、海岸波浪观测和设计波浪的确定、波浪的传播变形、不规则波理论、非线性波和波浪破碎、波浪与建筑物相互作用、泥沙运动、海岸演变和环境影响分析等方面。  相似文献   

4.
The small-scale roughness of the sea surface acts as an important link in air-sea interaction processes. Radar and sonar waves are scattered by short surface waves providing the basis for remote sensing methods of the sea surface. At high wind speeds, breaking waves occur. Bubbles penetrate into the water and drastically increase acoustical reverberation, transmission loss and ambient noise. Thus, the development of short waves and wave breaking have to be known to apply radar remote sensing to the surface and to deduce from radar backscatter which sonar conditions prevail. To measure the wind dependence of short waves an experimental device was constructed for use from stationary platforms. It is nearly all-weather capable and can easily be handled by a crane. On the other hand, frequencies of short waves measured in a fixed position are extremely frequency shifted by currents. This limits the usefulness of tower-based measurements, e.g., the short wave modulation by wind and waves or currents can only be estimated in a rough approximation. Consequently, a buoy was developed to reduce the frequency shifts. The principle of the buoy is to drift in the local surface current and to follow the amplitudes of long waves. Therefore, short waves are measured in facets of long waves and the Doppler shifts are minimized. The wind is measured at a constant height above the long wave profile and relative to the moving facets. The paper describes the conventional measuring device and points out the necessity of the drifting buoy system. Examples of wind and wave spectra are presented and short wave modulations by long waves are depicted, too. From these measurements, new insights in short wave behaviour have to be expected  相似文献   

5.
This paper describes the results of an experimental investigation of the microwave backscatter from several laboratory generated transient breaking waves. The breaking waves were generated mechanically in a 35 m×0.7 m×1.14 m deep wave tank, utilizing chirped wave packets spanning the frequency range 0.8-2.0 Hz. Backscatter measurements, were taken by a X/K-band (10.525 GHz, 24.125 GHz) continuous wave Doppler radar at 30°, 45°, and 60° angles of incidence, and at azimuth angles of 0° and 180° relative to the direction of wave propagation. Surface profiles were measured with a high-speed video camera and laser sheet technique. Specular facets were detected by imaging the surface from the perspective of the radar. The maximum radar backscatter occurred in the upwave direction prior to wave breaking, was nearly polarization independent and corresponded to the detection of specular facets on the steepened wave face. This peak radar backscatter was predicted through a finite conductivity corrected physical optics technique over the measured surface wave profiles. Post break backscatter was predicted using a roughness corrected physical optics technique and the small perturbation method, which was found to predict the returns for vertical polarization, but to under predict the horizontal returns  相似文献   

6.
The shape of breaking waves has a significant effect on wave impact pressures on vertical sea walls. In order to refine the results of previous researchers, a systematic study of breaker shapes and wave impact pressures on a vertical wall using a newly developed experimental technique, sequential flash photography, was conducted at Queen's University of Belfast. Assumptions, like the existence of a vertical flip-through jet or a parallel face impact, could not be confirmed. The maximum pressure was found to occur for plunging breakers and at Still Water Level (SWL), although high pressures can also occur for other breaker types above or below SWL.  相似文献   

7.
Application of wavelet transform analysis to landslide generated waves   总被引:2,自引:0,他引:2  
The aim of this paper is to illustrate the results of a preliminary study on aerial landslide-generated waves, which has been mainly intended to establish a method for analyzing water surface records. Some simple physical experiments, reproducing the Scott Russell's wave generator, were carried out in a small two-dimensional wave flume; the Wavelet Transform (WT) is applied to analyze wave measurements and it is shown that useful information can be obtained by means of this technique. The celerity of impulsively generated waves, reflection by an overflow structure and seiching phenomena of the flume are studied. A discussion of the results along with some remarks about ongoing research is also given.  相似文献   

8.
9.
A series of experimental studies about the force of internal solitary wave and internal periodic wave on vertical cylinders have been carried out in a two-dimensional layered internal wave flume. The internal solitary waves are produced by means of gravitational collapse at the layer thickness ratio of 0.2, and the internal periodic waves are produced with rocker-flap wave maker at the layer thickness ratio of 0.93. The wave parameters are obtained through dyeing photography. The vertical cylinders of the same size are arranged in different depths. The horizontal force on each cylinder is measured and the vertical distribution rules are researched. The internal wave heights are changed to study the impact of wave heights on the force. The results show that the horizontal force of concave type internal solitary wave on vertical cylinder in the upper-layer fluid has the same direction as the wave propagating, while it has an opposite direction in the lower-layer. The horizontal force is not evenly distributed in the lower fluid. And the force at different depths increases along with wave height. Internal solitary wave can produce an impact load on the entire pile. The horizontal force of internal periodic waves on the vertical cylinders is periodically changed at the frequency of waves. The direction of the force is opposite in the upper and lower layers, and the value is close. In the upper layer except the depth close to the interface, the force is evenly distributed; but it tends to decrease with the deeper depth in the lower layer. A periodic shear load can be produced on the entire pile by internal periodic waves, and it may cause fatigue damage to structures.  相似文献   

10.
Physical modeling of long waves in laboratories is still a valuable and trustworthy option to study long wave propagation, run-up and near-shore dynamics, and complex nonlinear interactions of approaching wave and macroroughness elements on the shore. Yet, problems develop if full-scale measured time series of real tsunami or numerically derived time series are to be adequately modeled in a timewise meaningful and scaled experiment. Hence, an in-depth review of the state-of-the-art long wave generation methods in laboratory wave flumes and basins is conducted. The study reveals that improved laboratory techniques could significantly contribute to enhance the accuracy and applicability of experimental tests. This would give important information on the interaction between the shoreline and infrastructures on land in order to deduce valuable information on the topic of tsunami inundation processes or wave-induced impacts on houses. In this light, a novel wave generation technique using high-capacity pipe pumps under some control and a loop-feedback control is meticulously developed and discussed. The wave generation facility is successfully tested for single sinusoidal leading depression waves as well as for prolonged solitary and leading depression N-waves of varying duration. The long wave generation technique is further assessed in terms of its capability to generate long waves abstracted from prototype conditions. The influence of controller settings on the resulting waves is discussed.  相似文献   

11.
An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distrihution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced hy wave directionality and that that breaking criteria for directional waves are distinctly different from those for unidirectional waves.  相似文献   

12.
Stereo video techniques are effective for estimating the space–time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. We present an application of the Wave Acquisition Stereo System (WASS) for the analysis of offshore video measurements of gravity waves in the Northern Adriatic Sea and near the southern seashore of the Crimean peninsula, in the Black Sea. We use classical epipolar techniques to reconstruct the sea surface from the stereo pairs sequentially in time, viz. a sequence of spatial snapshots. We also present a variational approach that exploits the entire data image set providing a global space–time imaging of the sea surface, viz. simultaneous reconstruction of several spatial snapshots of the surface in order to guarantee continuity of the sea surface both in space and time. Analysis of the WASS measurements show that the sea surface can be accurately estimated in space and time together, yielding associated directional spectra and wave statistics at a point in time that agrees well with probabilistic models. In particular, WASS stereo imaging is able to capture typical features of the wave surface, especially the crest-to-trough asymmetry due to second order nonlinearities, and the observed shape of large waves are fairly described by theoretical models based on the theory of quasi-determinism (Boccotti, 2000). Further, we investigate space–time extremes of the observed stationary sea states, viz. the largest surface wave heights expected over a given area during the sea state duration. The WASS analysis provides the first experimental proof that a space–time extreme is generally larger than that observed in time via point measurements, in agreement with the predictions based on stochastic theories for global maxima of Gaussian fields.  相似文献   

13.
简要描述了用压力测波仪进行的几个深海波浪观测计划.指出在高波级条件下,由于缺乏压力测波仪记录转换的理论和实测依据,提供的波浪资料还需进一步验证.并提出使用Seapac2100方向潮流仪和S4方向潮流仪资料处理软件需注意的几个问题.  相似文献   

14.
15.
Low-frequency waves in the surf and swash zones on various beach slopes are discussed using numerical simulations. Simulated surface elevations of both primary waves and low-frequency waves across the surf zone were first compared with experimental data and good agreement found. Low-frequency wave characteristics are then discussed in terms of their physical nature and their relationship to the primary wave field on a series of sea bottom slopes. Unlike primary waves, low-frequency wave energy increases towards the shoreline. Low-frequency waves in the surf and swash are a function of incident waves and the sea bottom slope and hence the saturation level of the surf zone. Wave energy on a gently sloping beach is dominated by low-frequency waves while primary waves play a significant role on a steep beach. Low-frequency wave radiation from the surf zone on a given beach depends on primary wave frequency and beach slope. However, a very poor correlation was found between surf similarity parameter and low-frequency wave radiation.  相似文献   

16.
Nobuhito Mori   《Ocean Engineering》2003,30(2):658-220
The experimental studies of the breaking effects on wave statistics for deep-water random waves are presented. It is especially focused on the behavior of kurtosis of surface elevations due to wave breaking. Wave breaking suppresses the maximum limit of kurtosis of the surface elevation, although skewness depends on characteristic wave steepness. The mean instantaneous wave steepness of breaking waves defined using the zero-down-crossing method was much lower than expected from the Stokes waves.  相似文献   

17.
In this article, tsunamis represented as solitary waves was simulated using the fully nonlinear free surface waves based on Finite Element method developed by Sriram et al. (2006). The split up of solitary wave while it propagates over the uneven bottom topography is successfully established. Wave transmission and reflection over a vertical step introduced in the bottom topography is in good agreement with the experimental results from Seabra-Santos et al. (1987). The wave transformation over a continental shelf with different smooth slopes reveals that the solitary wave reflection increases while the continental slope varies from flat to steep. The interaction of the solitary wave with a vertical wall for different wave steepness has been analysed. The reflected shape of the profile is in good agreement with the observation made by Fenton and Rienecker (1982) and an increase in wave celerity is observed.  相似文献   

18.
Zhenhua Huang   《Ocean Engineering》2007,34(2):343-352
The Lagrangian surface drift current induced by surface gravity waves in a wave flume has been investigated experimentally by the particle tracking method. It was observed that in most regions of the flume, the time-mean surface drift current was in the opposite direction to that of the wave propagation. The secondary current in the form of a pair of longitudinal vortices caused by the lateral boundaries was analyzed. It is suggested that the convection of the vorticity generated by the wave-absorber and the lateral boundaries is an important factor in the determination of the time-mean drift in a wave flume.  相似文献   

19.
Real-time monitoring of wind and surface waves in Otsuchi Bay, Iwate, Tohoku, Japan, commenced in October 2012, using a mooring buoy with an ultrasonic anemometer and a single-mode GPS wave sensor. Wind and wave data are distributed hourly in real time via the Internet along with a chart of their time series. We analyzed data monitored in the first 3 months in order to assess the variability and occurrence of wind and waves and to elucidate the main reasons for wave variation in Otsuchi Bay. The monitoring data revealed that surface waves in the bay were predominantly affected by swells propagated from the northeastern offshore region and that the wave height was significantly correlated with the component of wind velocity toward Otsuchi Bay in the northeastern offshore region that faces the bay mouth. The offshore wind field was expected to provide information useful for predicting coastal waves in a ria bay in Sanriku such as Otsuchi Bay. However, it should be emphasized that the horizontal distribution of the offshore wind field which has a significant effect on the surface waves in a ria bay depends heavily on the topographic shape of the bay.  相似文献   

20.
In this work, the large-wave simulation (LWS) method is adapted for application in spilling wave breaking over a constant slope beach. According to LWS, large scales of velocities, pressure and free-surface elevation are numerically resolved, while the corresponding unresolved scale effects are taken into consideration by a subgrid scale (SGS) model for wave and eddy stresses. The model may be not fully applicable in very shallow water, close to the shoreline, where the unresolved, turbulent, free-surface oscillation is of the same order with the water depth. Time integration of the Euler equations is achieved by a two-stage fractional scheme, combined with a hybrid scheme for spatial discretization, consisting of finite difference and pseudospectral approximation methods. Model parameters are calibrated by comparison to available experimental data of free-surface elevation and velocities in the surf zone for cross-shore incoming waves. The action of the wave SGS stresses in the outer coastal and surf zones initiates breaking and generates appropriate vorticity, in the form of an eddy structure (surface roller), at the breaking wavefront. At incipient breaking, both advection and gravity contribute to the vorticity flux at the free surface, while only after the full development of the surface roller, the effect of advection becomes stronger. The SGS model is also utilized to simulate propagation, refraction and breaking of oblique incoming waves. The gradual breaking and dissipation of wave crestlines and the surface roller structure along the breaking wavefront are automatically captured without any empirical input, such as data for the roller shape or the wave propagation angle at breaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号