首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The seismic performance of a self-centering precast reinforced concrete (RC) frame with shear walls was investigated in this paper. The lateral force resistance was provided by self-centering precast RC shear walls (SPCW), which utilize a combination of unbonded prestressed post-tensioned (PT) tendons and mild steel reinforcing bars for flexural resistance across base joints. The structures concentrated deformations at the bottom joints and the unbonded PT tendons provided the self-centering restoring force. A 1/3-scale model of a five-story self-centering RC frame with shear walls was designed and tested on a shake-table under a series of bi-directional earthquake excitations with increasing intensity. The acceleration response, roof displacement, inter-story drifts, residual drifts, shear force ratios, hysteresis curves, and local behaviour of the test specimen were analysed and evaluated. The results demonstrated that seismic performance of the test specimen was satisfactory in the plane of the shear wall; however, the structure sustained inter-story drift levels up to 2.45%. Negligible residual drifts were recorded after all applied earthquake excitations. Based on the shake-table test results, it is feasible to apply and popularize a self-centering precast RC frame with shear walls as a structural system in seismic regions.  相似文献   

2.
为减小结构震后残余位移,提高框架结构的震后可修复性,本文提出1种自复位耗能加固方法。以一典型框架结构为例,对比传统框架结构和采用自复位耗能装置加固框架结构的地震响应,并研究自复位耗能装置各参数对加固后结构抗震性能的影响。结果表明:采用自复位耗能装置加固框架结构可有效减小残余位移,但有可能增大结构内力响应;结构的残余位移随着弹簧刚度的增大而减小,结构的内力响应也随之增大;预拉力越大,结构内力响应增加越小,在实际工程中应对自复位加固装置的弹簧刚度和预拉力进行优化以获得最优的自复位加固效果。  相似文献   

3.
利用超弹性SMA螺栓梁柱节点的耗能能力和自复位特性,将其引入到耗能跨而构建"自复位耗能跨",基于既有的节点试验研究结果对结构体系的滞回性能进行了探讨。在此基础上,以具有旗形滞回特征的单自由度体系为工具,对配置自复位耗能跨低多层钢框架体系的能量系数进行推导。能量系数可以合理量化具有旗形滞回规则结构的峰值响应需求,能量系数越低,表明地震动下结构的峰值响应越低。为了阐明滞回参数对能量系数的影响,对具有不同滞回参数组合可代表低多层结构的等效SDOF体系进行了非线性动力分析,参数组合包括周期、屈服后刚度比、延性系数及能量比。同时对能量系数的离散性也进行了分析。结果表明:能量系数及能量系数的离散性受结构周期、屈服后刚度比及延性系数影响较大,受能量比的影响较小。  相似文献   

4.
为了研究自复位中心支撑钢框架(SC-CBF)结构的抗震性能,对一四层SC-CBF结构进行了静力弹塑性分析、低周往复加载分析和动力弹塑性时程分析,并与中心支撑钢框架(CBF)结构进行对比,探究了不同GAP单元刚度和预应力筋截面积对SC-CBF结构自复位性能及抗震性能的影响规律。结果表明:与传统CBF结构相比,SC-CBF结构的抗侧能力强,地震作用下基底剪力小,卸载后的残余变形较小,具有良好的延性性能;在极罕遇地震作用下SC-CBF结构的位移响应大,耗散的能量多,层间位移角大而残余位移小,表现出良好的自复位性能和抗震性能;GAP单元刚度对预应力筋的受力性能影响较为明显,对结构的整体受力性能和延性性能影响较小,但结构的整体受力性能和延性性能受预应力筋截面积影响显著。  相似文献   

5.
The seismic response of single‐degree‐of‐freedom (SDOF) systems incorporating flag‐shaped hysteretic structural behaviour, with self‐centring capability, is investigated numerically. For a SDOF system with a given initial period and strength level, the flag‐shaped hysteretic behaviour is fully defined by a post‐yielding stiffness parameter and an energy‐dissipation parameter. A comprehensive parametric study was conducted to determine the influence of these parameters on SDOF structural response, in terms of displacement ductility, absolute acceleration and absorbed energy. This parametric study was conducted using an ensemble of 20 historical earthquake records corresponding to ordinary ground motions having a probability of exceedence of 10% in 50 years, in California. The responses of the flag‐shaped hysteretic SDOF systems are compared against the responses of similar bilinear elasto‐plastic hysteretic SDOF systems. In this study the elasto‐plastic hysteretic SDOF systems are assigned parameters representative of steel moment resisting frames (MRFs) with post‐Northridge welded beam‐to‐column connections. In turn, the flag‐shaped hysteretic SDOF systems are representative of steel MRFs with newly proposed post‐tensioned energy‐dissipating connections. Building structures with initial periods ranging from 0.1 to 2.0s and having various strength levels are considered. It is shown that a flag‐shaped hysteretic SDOF system of equal or lesser strength can always be found to match or better the response of an elasto‐plastic hysteretic SDOF system in terms of displacement ductility and without incurring any residual drift from the seismic event. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace,termed glass-fiber-reinforced-polymer(GFRP)-tube-confined-concrete composite brace,is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation.Together with a contribution from the GFRP-tube confined concrete,the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting.An analysis model is established and implemented in a general finite element analysis program-OpenSees,for simulating the load-displacement behavior of the composite brace.Using this model,a parametric study of the hysteretic behavior(energy dissipation,stiffness,ductility and strength)of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered.To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete(RC)frame structure was retrofitted with the composite braces.Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records.The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.  相似文献   

7.
This paper investigates the non-linear seismic behavior of structures such as slender unreinforced masonry shear walls or precast post-tensioned reinforced concrete elements, which have little hysteretic energy dissipation capacity. Even if this type of seismic response may be associated with significant deformation capacity, it is usually not considered as an efficient mechanism to withstand strong earthquakes. The objective of the investigations is to propose values of strength reduction factors for seismic analysis of such structures. The first part of the study is focused on non-linear single-degree-of-freedom (SDOF) systems. A parametric study is performed by computing the displacement ductility demand of non-linear SDOF systems for a set of 164 recorded ground motions selected from the European Strong Motion Database. The parameters investigated are the natural frequency, the strength reduction factor, the post-yield stiffness ratio, the hysteretic energy dissipation capacity and the hysteretic behavior model (four different hysteretic models: bilinear self-centring, with limited or without energy dissipation capacity, modified Takeda and Elastoplastic). Results confirm that the natural frequency has little influence on the displacement ductility demand if it is below a frequency limit and vice versa. The frequency limit is found to be around 2 Hz for all hysteretic models. Moreover, they show that the other parameters, especially the hysteretic behavior model, have little influence on the displacement ductility demand. New relationships between the displacement ductility demand and the strength reduction factor for structures having little hysteretic energy dissipation capacity are proposed. These relationships are an improvement of the equal displacement rule for the considered hysteretic models. In the second part of the investigation, the parametric study is extended to multi-degree-of-freedom (MDOF) systems. The investigation shows that the results obtained for SDOF systems are also valid for MDOF systems. However, the SDOF system overestimates the displacement ductility demand in comparison to the corresponding MDOF system by approximately 15%.  相似文献   

8.
为讨论近断层地震动下摇摆-自复位(Rocking Self-Centering, RSC)桥墩连续梁的地震反应及其抗震优缺点。基于OpenSees有限元分析平台讨论了RSC桥墩三维建模方法,通过对6个试验构件的模拟,比较模拟与试验桥墩滞回曲线、预应力筋最大应力等指标,验证了模型准确性。建立设置RSC桥墩和普通钢筋混凝土(Reinforced Concrete, RC)桥墩的上部结构相同的两座连续梁桥,输入3组含有强速度脉冲的近断层地震波进行非线性动力时程分析,对比其抗震性能。结果表明:在0.4 g近断层地震动下,RSC桥墩与普通RC桥墩相比,RSC桥墩的最大位移角为普通RC桥墩的78.1%~97.6%,墩底曲率延性系数仅为普通RC桥墩的24.0%~34.0%,减小了桥墩的最大变形,也减轻了桥墩地震损伤,不利的一点是使用RSC桥墩会导致支座位移增大。RSC桥墩震后的残余位移较小,且预应力筋处于弹性受力阶段,为实现震后桥梁功能的快速恢复提供了条件。  相似文献   

9.
This paper focuses on constant-ductility inelastic displacement ratios of self-centering single-degree-of-freedom (SDF) systems with two different levels of energy dissipation capacity, in the presence of 5% viscous damping ratio. A statistical analysis is developed considering an earthquake database composed of 228 ground motions recorded in California with magnitudes greater than six and organized for NEHRP soil class, ground motion duration, and peak ground acceleration. The response of self-centering SDF systems with large variability of initial periods, ductility levels, and postyield stiffness ratios is investigated and compared with the responses of SDF systems with bilinear plastic, Clough, and Takeda hysteresis. The inelastic demand variation with soil class, initial period, postyield stiffness ratio, unloading stiffness degradation, ductility level, and hysteretic behavior is highlighted. Simple and conservative analytical estimates of constant-ductility inelastic displacement ratios for mean and 90th percentile values in terms of initial period, ductility level, and postyield stiffness ratio are proposed to allow the extension of the Displacement-Based Design via Inelastic Displacement Ratio (CμDBD) to self-centering structural systems.  相似文献   

10.
锈蚀钢筋混凝土圆柱抗震性能的试验研究   总被引:1,自引:0,他引:1  
对不同锈蚀程度的钢筋混凝土圆柱进行低周反复试验,研究了不同轴压比下的钢筋锈蚀率对钢筋混凝土圆柱滞回曲线、骨架曲线、刚度、延性及耗能能力的影响;给出了试件累积耗能、屈服荷载、极限荷载、荷载最大值和位移延性系数与钢筋锈蚀率和轴压比的关系。研究表明,随着钢筋锈蚀率和轴压比的增大,试件的滞回曲线趋于干瘪,骨架曲线下降段变陡,试件的刚度、延性和耗能能力减小。  相似文献   

11.
Based on performance-based seismic engineering, this paper proposes an optimal seismic retrofit model for steel moment resisting frames (SMRFs) to generate a retrofit scheme at minimal cost. To satisfy the acceptance criteria for the Basic Safety Objective (BSO) specified in FEMA 356, the minimum number of upgraded connections and their locations in an SMRF with brittle connections are determined by evolutionary computation. The performance of the proposed optimal retrofitting model is evaluated on the basis of the energy dissipation capacities, peak roof drift ratios, and maximum interstory drift ratios of structures before and after retrofitting. In addition, a retrofit efficiency index, which is defined as the ratio of the increment in seismic performance to the required retrofitting cost, is proposed to examine the efficiencies of the retrofit schemes derived from the model. The optimal seismic retrofit model is applied to the SAC benchmark examples for threestory and nine-story SMRFs with brittle connections. Using the retrofit efficiency index proposed in this study, the optimal retrofit schemes obtained from the model are found to be efficient for both examples in terms of energy dissipation capacity, roof drift ratio, and maximum inter-story drift ratio.  相似文献   

12.
张家广  吴斌  梅洋 《地震学刊》2014,(5):637-642
提出了一种既有钢筋混凝土框架结构的抗震加固方法,该法采用防屈曲支撑提高框架结构体系的水平承载力和耗能能力,利用外包钢进一步提高柱子的抗弯和抗剪承载力。采用开源有限元程序OpenSees,分别建立空钢筋混凝土框架和防屈曲支撑加固钢筋混凝土框架的分析模型,对2榀钢筋混凝土框架的抗震性能进行模拟。防屈曲支撑采用了弹塑性桁架单元模型,加固框架柱混凝土考虑了外包钢的约束作用。将分析结果与拟静力试验结果进行比较,以检验分析模型的准确性,以及研究防屈曲支撑和外包钢对混凝土框架抗震性能的影响。分析结果表明,数值模拟与试验结果吻合较好,验证了基于OpenSees建立的数值模型的准确性;外包钢有效改善了框架柱的抗弯承载力和变形能力;防屈曲支撑显著提高了加固框架体系的水平刚度、水平承载力和耗能能力。  相似文献   

13.
介绍了EPS模块混凝土剪力墙结构研究的概况,深化分析了这种结构复合墙体的抗震和保温性能。研究表明:EPS模块混凝土剪力墙结构房屋,具有良好的保温隔热性能;与传统的粘土砖房相比较,其承载力、刚度、延性、抗震耗能能力均有显著提高;EPS模块单排配筋混凝土剪力墙结构节能房屋,适于地震区低层和多层房屋的抗震设计,具有良好的应用推广前景。  相似文献   

14.
基于能量平衡原理,对多层钢筋混凝土框架结构的地震输入能量的分布及耗散规律进行了研究。选用8条天然地震波和2条人工波,运用Perform-3D软件,对多层钢筋混凝土框架结构模型在7度罕遇地震作用下的弹塑性能量进行数值仿真计算。计算了钢混框架结构在不同地震波下的地震总输入能量、滞回耗能、阻尼耗能以及滞回耗能占总耗能的比例时程,分析了地震能量在各分量中的分布及分配规律;分析了阻尼比和延性比对地震输入能量的影响,确定了滞回耗能随阻尼比和延性比的变化规律;研究了钢筋混凝土框架结构梁柱构造和竖向侧移刚度变化对地震输入能及其分量的影响,确定了多层钢筋混凝土框架结构滞回耗能沿竖向的分布规律及沿横向在框架构件中的分配,研究了框架结构存在薄弱层情况下的滞回耗能的分布规律。揭示了多自由度钢筋混凝土框架结构地震输入能量及其分布规律,可为基于能量平衡原理的抗震设计理论在工程实际中的运用提供有益的参考。  相似文献   

15.
The sensitivity of seismic energy dissipation to ground motion and system characteristics is assessed. It is found that peak ground acceleration, peak ground velocity to acceleration (V/A), dominant period of ground excitation and effective response duration are closely correlated with the energy dissipated by a SDOF system. Ductility ratio and damping ratio have no significant influence on the energy dissipation. An energy dissipation index is proposed for measuring the damage potential of earthquake ground motion records which includes the effects of basic excitation and response characteristics contributing to the seismic energy dissipation. The proposed index is compared with several intensity measures for the set of 94 ground motion records considered in the study.  相似文献   

16.
This paper aims to provide a guideline for numerical modeling of reinforced concrete (RC) frame elements for the seismic performance assessment of a structure. Several types of numerical models of RC frame elements are available in nonlinear structural analysis packages. Because the numerical models are formulated based on different assumptions and theories, the models' accuracy, computing time, and applicability vary, which poses a great difficulty to practicing engineers and limits their confidence in the analysis results. In this study, the applicability of five representative numerical models of RC frame elements is evaluated through comparison with 320 experimental results available from the Pacific Earthquake Engineering Research column database. The accuracy of a numerical model is evaluated according to its initial stiffness, peak strength, and energy dissipation capacity of the global responses. In addition, a parametric study of a cantilever RC column subjected to earthquake excitation is carried out to systematically evaluate the consequence of the adopted numerical models on the maximum inelastic structural responses. It is found from this study that the accuracy of the numerical models is sensitive to shear force demand–capacity ratio. If a structural period is short and the structure is shear critical, the use of numerical models that can explicitly capture the shear deformation and failure is suggested. If the structural period is long, the selection of a numerical model does not greatly influence the global response of the structure. The paper also presents statistical parameters of each numerical model, which can be used for probabilistic seismic performance assessment. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo-velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio when the SDOF system undergoes inelastic response. Accordingly, the proposed relationship can be employed in an energy-based seismic design procedure for determining the required energy dissipation capacity of a structural system.  相似文献   

18.
付光磊  孙锐  宋妍 《中国地震》2020,36(1):162-172
提高学校公共建筑在地震作用下的抗震能力是自汶川地震后一直备受关注的研究课题。高烈度地区对地震设防烈度要求较高,该类建筑的结构抗震设计难度较大。通过对常规框架结构方案及增设金属阻尼器的消能减震方案进行对比分析,发现在地震作用下阻尼器发生剪切变形,小震工况即屈服耗能,能够提供1%的附加阻尼比。相比于传统框架结构,消能减震方案能够有效减小结构构件的尺寸,进而满足学校建筑对于净高的要求。在罕遇地震作用下,该结构体系满足"强柱弱梁"的设计准则,结构位移角满足规范要求,抗震性能较纯框架结构好。研究结论可为金属阻尼器的设计和进一步研究提供参考。  相似文献   

19.
主要针对梁腹板带有摩擦耗能螺栓的自复位钢框架节点结构进行抗震性能和可更换性能的试验研究,探讨该类节点在往复荷载作用下的滞回性能以及节点域的变形特征。在参数选型的基础上,对5组钢框架节点试件进行了低周反复荷载作用下的拟静力试验,其中:4组试件具有自复位能力,分析了各试件的承载力、刚度、耗能性能和滞回特性等性能。综合研究结果表明:所提出的拼接节点能够利用摩擦螺栓的滑移提高节点的耗能能力,有效减少梁和柱主体构件的损伤,同时预应力筋提供了结构的自复位能力。试验结果表明:在地震作用之后,通过更换腹板及摩擦螺栓可以使结构的承载能力和耗能性能与震前基本一致,从而实现结构功能的快速恢复。  相似文献   

20.
The results of experimental tests carried out on reinforced concrete (RC) full‐scale 2‐storey 2‐bays framed buildings are presented. The unretrofitted frame was designed for gravity loads only and without seismic details; such frame was assumed as a benchmark system in this study. A similar RC frame was retrofitted with buckling‐restrained braces (BRBs). The earthquake structural performance of both prototypes was investigated experimentally using displacement‐controlled pushover static and cyclic lateral loads. Modal response properties of the prototypes were also determined before and after the occurrence of structural damage. The results of the dynamic response analyses were utilized to assess the existing design rules for the estimation of the elastic and inelastic period of vibrations. Similarly, the values of equivalent damping were compared with code‐base relationships. It was found that the existing formulations need major revisions when they are used to predict the structural response of as‐built RC framed buildings. The equivalent damping ratio ξeq was augmented by more than 50% when the BRBs was employed as bracing system. For the retrofitted frame, the overstrength Ω and the ductility µ are 1.6 and 4.1, respectively; the estimated R‐factor is 6.5. The use of BRBs is thus a viable means to enhance efficiently the lateral stiffness and strength, the energy absorption and dissipation capacity of the existing RC substandard frame buildings. The foundation systems and the existing members of the superstructure are generally not overstressed as the seismic demand imposed on them can be controlled by the axial stiffness and the yielding force of the BRBs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号