首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The upper Nepean River has been progressively regulated for water supply to Sydney and Wollongong since 1886 by the Upper Nepean Water Supply Scheme which consists of four large dams, two small dams and two diversion weirs. Secular rainfall changes produced periods of high rainfall and large floods (flood‐dominated regimes) between 1857 and 1900 and 1947 and the present, and an intervening period (1901–46) of low rainfall and small floods (drought‐dominated regime). Upstream impoundment and flow regulation significantly reduced flood magnitudes for most return periods during both types of flood regimes. The probability distribution of mean daily flows was also changed significantly by flow regulation such that during the drought‐dominated regime, the high and low frequency flows were reduced substantially but the moderate frequency flows were increased due to dam releases; the change from a regulated drought‐dominated regime to a regulated flood‐ dominated regime resulted in a substantial increase in discharge for most durations; and increased water diversions to Wollongong during the current flood‐dominated regime produced a marked downward shift in the whole flow duration curve. Nepean Dam reduced downstream suspended sediment yields by two orders of magnitude because it traps in excess of 99 per cent of the inflowing suspended sediment load. Streamflow releases are urgently required from the two diversion weirs to improve downstream water quality and to ensure the viability of the resident ‘potentially threatened’ eastern Macquarie perch (Macquaria nov. sp.).  相似文献   

2.
Floodplains contain valuable stratigraphic records of past floods, but these records do not always represent flood magnitudes in a straightforward manner. The depositional record generally reflects the magnitude, frequency, and duration of floods, but is also subject to storm-scale hysteresis effects, flood sequencing effects, and decade-scale trends in sediment load. Many of these effects are evident in the recent stratigraphic record of overbank floods along the Upper Mississippi River (UMR), where the floodplain has been aggrading for several thousand years. On low-lying floodplain surfaces in Iowa and Wisconsin, 137Cs profiles suggest average vertical accretion rates of about 10 mm/year since 1954. These rates are slightly less than rates that prevailed earlier in the 20th Century, when agricultural land disturbance was at a maximum, but they are still an order of magnitude greater than long-term average rates for the Holocene. As a result of soil conservation practices, accretion rates have decreased in recent decades despite an increase in the frequency of large floods.The stratigraphic record of the Upper Mississippi River floodplain is dominated by spring snowmelt events, because they are twice as frequent as rainfall floods, last almost twice as long, and are sometimes associated with very high sediment concentrations. The availability of sediment during floods is also influenced by a strong hysteresis effect. Peak sediment concentrations generally precede the peak discharges by 1–4 weeks, and concentrations are usually low (<50 mg/l) during the peak stages of most floods. The lag between peak concentration and peak discharge is especially large during spring floods, when much of the runoff is contributed by snowmelt in the far northern reaches of the valley.The great flood of 1993 on the Mississippi River focused attention on the geomorphic effectiveness and stratigraphic signature of large floods. At McGregor, where the peak discharge had a recurrence interval of 14 years, the flood was most notable for its long duration (168 days above 1600 m3s−1), high sediment concentrations (three episodes >180 mg/l), and large suspended load (1.71 Mt). The flood of 2001, despite its greater magnitude (recurrence interval 70 years), was associated with relatively low sediment concentrations (<60 mg/l). The 1993 and 2001 floods each left 30–80 mm of silty fine sand on most low-lying floodplain surfaces, but the 2001 flood produced sandy levees near the channel while the 1993 flood did not. The stratigraphic signature of these recent floods is more closely related to the duration and total suspended load of the event than to the magnitude of the peak discharge.  相似文献   

3.
A large number of rivers in Tuscany have channel planforms, which are neither straight nor what is usually understood as meandering. In the typical case, they consist of an almost straight, slightly incised main channel fringed with large lateral bars and lunate-shaped embayments eroded into the former flood plain. In the past, these rivers have not been recognised as an individual category and have often been considered to be either braided or meandering. It is suggested here that this type of river planform be termed pseudomeandering.A typical pseudomeandering river (the Cecina River) is described and analysed to investigate the main factors responsible for producing this channel pattern. A study reach (100×300 m) was surveyed in detail and related to data on discharge, channel changes after floods and grain-size distribution of bed sediments. During 18 months of topographic monitoring, the inner lateral bar in the study reach expanded and migrated towards the concave outer bank which, concurrently, retreated by as much as 25 m. A sediment balance was constructed to analyse bar growth and bank retreat in relation to sediment supply and channel morphology. The conditions necessary to maintain the pseudomeandering morphology of these rivers by preventing them from developing a meandering planform, are discussed and interpreted as a combination of a few main factors such as the flashy character of floods, sediment supply (influenced by both natural processes and human impact), the morphological effects of discharges with contrasting return intervals and the short duration of flood events. Finally, the channel response to floods with variable sediment transport capacity (represented by bed shear stress) is analysed using a simple model. It is demonstrated that bend migration is associated with moderate floods while major floods are responsible for the development of chute channels, which act to suppress bend growth and maintain the low sinuosity configuration of the river.  相似文献   

4.
Rivers in drylands typically are characterized by extreme flow variability, with long periods of little or no flow interspersed with occasional large, sometimes extreme, floods. Complete adjustment of river form and process is sometimes inhibited, resulting in a common assumption that equilibrium conditions may rarely, if ever, exist in dryland rivers, and that transient and unstable (nonequilibrium) behavior is the norm. Examples from the Channel Country and the Northern Plains in central Australia challenge that notion. Along the middle reaches of these intermediate and large, low-gradient rivers, where long duration floods generate moderate to low unit stream powers and boundary resistance is high as a result of indurated alluvial terraces, cohesive muds or riparian vegetation, there is evidence that: (1) channels have remained essentially stable despite large floods; (2) sediment transport discontinuities, while present at a catchment scale, are largely insignificant for channel form and process in individual reaches; (3) there are strong correlations between many channel form and process variables; and (4) many rivers appear to be adjusted to maximum sediment transport efficiency under conditions of low gradient, abundant within-channel vegetation and declining downstream discharge. In these middle reaches, rivers are characterized by equilibrium conditions. However, in the aggradational lower reaches of rivers on the Northern Plains, where upstream terraces are buried by younger sediments and channels are less confined, nonequilibrium conditions prevail. Here, channels sometimes undergo sudden and substantial changes in form during large floods, sediment transport discontinuities are readily apparent, and landforms such as splays remain out-of-balance with normal flows. Hence, dryland rivers can exhibit both equilibrium and nonequilibrium conditions, depending on factors such as catchment size, channel gradient, flood duration, unit stream power, channel confinement, sediment cohesion, and bank strength. [Key words: dryland rivers, floods, equilibrium, nonequilibrium, central Australia.]  相似文献   

5.
黄河下游游荡段河床调整对于水沙组合的复杂响应   总被引:11,自引:3,他引:11  
许炯心  张欧阳 《地理学报》2000,55(3):274-280
以黄河资料为基础,提示地包括非高含沙水流和高含沙水流在内的河道挟不流的复杂冲淤行为。由于这种复杂冲淤行为的作用和高含沙水流特殊能耗特征的影响,使得河床横断面形态及平面形态对于水沙组合的响应出现非线性特征,这可视为流水地貌系统复杂响应的又一表现形式。这种复杂响应不能用Schumm的河床调整来解释,因而需要对这一理论作必要的修正。  相似文献   

6.
This study is based on the data from Zizhou and Wangjiagou experimental stations on the Loess Plateau in the major sediment‐producing areas of the middle Yellow River drainage basin. It deals with characteristics of hyperconcentrated flows in the slope‐channel systems in the gullied hilly areas on the Loess Plateau. The results show that the formation of hyperconcentrated flows is closely related to the vertical differentiation of landforms. Based on data from 21 rainfall events in the period 1963–1970, event‐averaged suspended sediment concentration for hilltop, upper hillslope, lower hillslope and gully slope was calculated as 36 kg/m3, 89 kg/m3, 304 kg/m3 and 505 kg/m3, and the frequency of hyperconcentrated flows was 0.0, 0.17, 0.74 and 1.0, respectively. Thus, hyperconcentrated flows form on the lower part of hillslopes and on the gully slopes, and develope well in gully channels of various orders. There exists a sediment storing‐releasing mechanism, resulting from different behaviours of sediment transport by non‐hyperconcentrated and hyperconcentrated flows. When water flows are nonhyperconcentrated, the relatively coarse fractions of sediment from the slopes are deposited in the channel. When hyperconcentrated flows occur, the previously deposited coarse sediment may be eroded and released from the channel. A close relationship is found between rainstorms and the formation of hyperconcentrated flows, and some thresholds of rainfall and runoff for the occurrence of hyperconcentrated flows have been identified.  相似文献   

7.
北洛河下游河槽形成与输沙特性   总被引:8,自引:0,他引:8  
齐璞  孙赞盈 《地理学报》1995,50(2):168-177
北洛河发湖泊于黄河粗沙来源区,年均含沙量达128kg/m^3年均流量仅25m^3.s,是典型的多沙河流,但由于泥沙主要由高含沙洪水输送,平水流量小,含沙量低,经常保持窄深稳定河槽,使高含沙洪水挟带的泥沙能顺利输送而不淤,并形成弯曲性河流。  相似文献   

8.
Northwestern California is prone to regional, high magnitude winter rainstorms, which repeatedly produce catastrophic floods in the basins of the northern Coast Ranges. Major floods on the Eel River in 1955 and 1964 resulted in substantial geomorphic changes to the channel, adjacent terraces, and tributaries. This study evaluated the changes and the effects of a moderate flood in 1997 through field observations and examination of aerial photographs that spanned from 1954 to 1996. The purpose was to document the nature and magnitude of geomorphic responses to these three floods and assess the rates and controls on the recovery of the Eel River and its tributaries. Channel widening from extensive bank erosion was the dominant geomorphic change along the lower Eel River during major floods. As a result of the 1964 flood, the largest amount of widening was 195 m and represented an 80% change in channel width. Channel narrowing characterized the periods after the 1955 and 1964 floods. More than 30 years after the 1964 flood, however, the river had not returned to pre-flood width, which suggests that channel recovery required decades to complete. A long recovery time is unusual given that the Eel River is located in an area with a “superhumid” climate and has an exceptionally high sediment yield. This long recovery time may reflect highly seasonal precipitation and runoff, which are concentrated in 3–5 months each winter. In contrast to the main stem of the Eel River, the dominant effects of floods on the tributaries of the Eel River were rapid aggradation of channel bed and valley floor followed by immediate downcutting. Dendrogeomorphic data, aerial photographs, and field observations indicate that thick wedges of gravel, derived largely from hillslope failures in upper reaches of the tributaries, are deposited at and immediately upstream of the mouths of tributaries as the stage of the Eel River exceeded that of the tributaries during major floods. In the waning stages of the flood, the tributaries cut through the gravel at a rate equal to the lowering of the Eel and generated unpaired terraces and nickpoints. The complete process of deposition and incision can occur within a few days of peak discharge. Although reworking of some sediment on the valley floor may continue for years after large floods, channel morphology in the tributaries appears to be a product of infrequent, high magnitude events. The morphology of the tributary channel also appears to be greatly influenced by the frequency and magnitude of mass wasting in headwater areas of small basins.  相似文献   

9.
In this study, an attempt has been made to evaluate the temporal variations in specific stream power and the total energy available for geomorphic work during the monsoon season for the Tapi River, in central India. Continuous daily discharge data (1978–1990), hydraulic geometry equations and the relationship between discharge and water surface slope were used to compute the daily specific stream power (ω) for the Savkheda gauging site in the lower Tapi Basin. The total amount of energy generated by all the monsoon flows was estimated by integrating the area under the ω-graph derived for the monsoon season.The analyses of the 13-year daily discharge data reveal that the average and maximum ω values range from 4–20 W m− 2, and 22–964 W m− 2 respectively. Specific stream power duration curve derived for the site shows that for 25% of the time the power per unit area is > 10 W m− 2. Furthermore, unit stream power was found to be above the Williams' [Williams, G.P., 1983. Paleohydrological methods and some examples from Swedish fluvial environments. I. Cobble and boulder deposits. Geografiska Annaler 65A, 227–243.] threshold of pebble-movement (1.5 W m− 2), cobble-movement (16 W m− 2) and boulder-movement (90 W m− 2) for 71%, 15% and 2% of the time, respectively. Computations further indicate that the total amount of energy generated by the flows during the monsoon season is in the range of 37 MJ (deficit monsoon years) to 256 MJ (excess monsoon and/or flood years). Large floods have one-third share in the total monsoon energy expenditure. In the absence of appropriate data on the yearwise geomorphic effects, the geomorphic work was evaluated in terms of the total suspended sediment load transported. The total monsoon sediment load is strongly related to the total monsoon energy. The results of the study indicate that the average flow competence and capacity are remarkably higher during wetter monsoon seasons and flood years than during the shorter and drier monsoon seasons.The present analyses demonstrate that the flows are geomorphically effective for a greater part of the monsoon season, except during the deficient monsoon years, and there is little doubt that large-magnitude floods are effective agents of geomorphic change in monsoonal rivers.  相似文献   

10.
人类活动对黄河中游高含沙水流的影响   总被引:7,自引:2,他引:7  
许炯心 《地理科学》2002,22(3):294-299
以黄河中游干流和渭河、无定河的资料研究了人类活动对黄土高原河流高含沙水流的发生频率的影响。人类破坏森林植被,大量拦截黄河上游清水来源区的清水基流,使得高含沙水流发生频率增大,大规模水土保持措施的实施则使高含沙水流发生频率迅速减小。近50年来黄河干流和一些支流的高含沙水流随时间的变化可以用一个三阶段模式来概括,即20世纪50-60年代,由于人类破坏植被,使高含水流频率增大;20世纪60年代末至80年代中期,大规模水土保持措施的实施使高含沙水流发生的频率减小;20世纪80年代末期以来,人类大量拦截利用清水资源,使高含沙水流的发生频率又复增大。  相似文献   

11.
近50年黄河乌兰布和沙漠段辫状河道演变   总被引:4,自引:3,他引:1  
李永山  彭文昌  任亮  李勇 《中国沙漠》2016,36(6):1689-1694
依据水沙资料和断面资料,对黄河乌兰布和沙漠段辫状河道形态近50年演变特征及趋势进行探讨分析。结果表明:在大流量条件下(1966-1993年),河流横向侵蚀、搬运堆积过程强烈,风沙入黄(河)量大,河道横向摆动频繁,辫状河道发育强烈。当黄河流量减小时(1993-2013年),河流横向摆动能力减弱,黄河主河槽远离左岸乌兰布和沙漠沙丘,河流输沙能力减弱,汊道泥沙淤积导致心滩边滩相连,河流分汊数量明显减少,辫状河道萎缩,黄河乌兰布和沙漠段辫状河型有向弯曲型河道转变的趋势。  相似文献   

12.
Jiongxin Xu 《Geomorphology》2004,57(3-4):321-330
Through an analysis of data collected from the Yellow River and its tributaries on the Loess Plateau of China, the phenomenon of double-thresholds in scour–fill processes of wide-range water-sediment two-phase flows has been shown. Thresholds located in non-hyperconcentrated flows may be called the lower threshold, and that in hyperconcentrated flows the upper threshold. This double-threshold phenomenon leads to complicated sediment transport behavior of heavily sediment-laden rivers. With an increase in suspended sediment concentration, the channel sediment delivery ratio increases initially and becomes higher than 1, followed by a decrease and finally becomes lower than 1 again.Controlled by the double-thresholds in the scour–fill processes, channel adjustment of the lower Yellow River is non-linear and complex. When the suspended concentrations were lower than the lower threshold or higher than the upper threshold, scour or bed downcutting was the dominant channel-forming process. Channel shape tends to be narrower and deeper, and the channel thalweg became more sinuous. When the suspended concentrations lay between the lower and upper thresholds, deposition of sediment was the dominant channel-forming process; channel shape tended to be shallower and wider, and channel thalweg became less sinuous.  相似文献   

13.
Dry Creek is a major tributary of the Russian River in Northern California (USA) that has experienced hydrologic and morphologic alterations after the closure of Warm Springs Dam in 1983. Our objective is to present a detailed diagnosis of the modification of the creek’s flow and sediment regimes, and interpret the alterations regarding the ecomorphologic evolution previously observed in the creek. Statistical analysis of the river’s flow and sediment series indicates that dam operation has had significant impacts on the magnitude and frequency of occurrence of the highest floods, and the magnitude, variability, and duration of low and very low flows. Similarly, sediment concentration and discharge have also experienced major alterations. Loss of habitat complexity for native flora and fauna (especially endangered salmonids), channel incision, and vegetation encroachment are some of the negative trends found for the creek over the last 30 years, since river regulation began. We discuss the present dynamics of the river and propose, on that basis, the improvement of its hydromorphic functioning as part of future large-scale restoration initiatives.  相似文献   

14.
Channel responses to flow depletions in the lower Duchesne River over the past 100 years have been highly complex and variable in space and time. In general, sand-bed reaches adjusted to all perturbations with bed-level changes, whereas the gravel-bed reaches adjusted primarily through width changes. Gravel-bed reaches aggraded only when gravel was supplied to the channel through local bank erosion and degraded only during extreme flood events.A 50% reduction in stream flow and an increase in fine sediment supply to the study area occurred in the first third of the 20th century. The gravel-bed reach responded primarily with channel narrowing, whereas bed aggradation and four large-scale avulsions occurred in the sand-bed reaches. These avulsions almost completely replaced a section of sinuous channel about 14 km long with a straighter section about 7 km long. The most upstream avulsion, located near a break in valley slope and the transition from a gravel bed upstream and a sand bed downstream, transformed a sinuous sand-bed reach into a braided gravel-bed reach and eventually into a meandering gravel-bed reach over a 30-year period. Later, an increase in flood magnitudes and durations caused widening and secondary bed aggradation in the gravel-bed reaches, whereas the sand-bed reaches incised and narrowed. Water diversions since the 1950s have progressively eliminated moderate flood events, whereas larger floods have been less affected. The loss of frequent flooding has increased the duration and severity of drought periods during which riparian vegetation can establish along the channel margins. As a result, the channel has gradually narrowed throughout the study area since the late 1960s, despite the occasional occurrence of large floods. No tributaries enter the Duchesne River within the study area, so all reaches have experienced identical changes in stream flow and upstream sediment supply.  相似文献   

15.
Fluvial processes, especially rates of floodplain accretion, are less well understood in the wet tropics than in other environments. In this study, the caesium-137 (137Cs) method was used to examine the recent historical sedimentation rate on the floodplain of the Wainimala River, in the basin of the Rewa River, the largest fluvial system in Fiji and the tropical South Pacific Islands. 137Cs activity in the floodplain stratigraphy showed a well-defined profile, with a clear peak at 115 cm depth. Our measured accretion rate of 3.2 cm year−1 over the last ca. 45 years exceeds rates recorded in humid regions elsewhere. This is explained by the high frequency of tropical cyclones near Fiji (40 since 1970) which can produce extreme rainfalls and large magnitude floods. Since the beginning of hydrological records, large overbank floods have occurred every 2 years on average at the study site. The biggest floods attained peak flows over 7000 m3 s−1, or six times the bankfull discharge. Concentrations of suspended sediments are very high (max. 200–500 g l−1), delivered mainly by channel bank erosion. In the future, climatic change in the tropical South Pacific region may be associated with greater tropical cyclone intensities, which will probably increase the size of floods in the Rewa Basin and rates of floodplain sedimentation.  相似文献   

16.
黄河游荡河段河床形态调整对洪水过程的响应   总被引:1,自引:1,他引:1  
以黄河流域1950~1985年200余场洪水资料为基础,并增加了最近的实验资料,分析了黄河下游游荡河段不同含沙量沙水过程中河床形态的调整过程,结果表明,由洪水过程所导致的河床形态变化是相当剧烈的。且与含沙量密切相关,表现出非线性的变化规律,当含沙量较小时,随含沙量的增大,洪水后河床宽深比增大,当含沙量增大到一定程度后再增大时,宽深比随含沙量的增大而减小,这一结果为修正Schumm关于河床形态变化的定性预测关系提供了新的依据。  相似文献   

17.
不同水沙条件下黄河下游二级悬河的发展过程   总被引:5,自引:0,他引:5  
以大量实测横断面资料为基础,研究了1973~1997年不同水沙过程对黄河下游二级悬河形成过程的影响。发现花园口至高村河段二级悬河集中形成于1985~1997年的枯水阶段。高村以下河段二级悬河的形成可分两个阶段,1973~1985年大水条件下是冲刷主槽和淤积滩地的时期,但是由于泥沙主要堆积在靠近滩唇的部位,造成河床横比降增大;1985~1997年枯水条件下泥沙在主槽中大量淤积,导致二级悬河的形势更加严重。生产堤限制了泥沙的堆积范围,导致生产堤内滩地平均高程增长速度明显快于生产堤外滩地平均高程增长速度,生产堤距较窄的河段生产堤内滩地平均高程增长速度较快,显示了生产堤对二级悬河的发展有促进作用。  相似文献   

18.
James C. Knox   《Geomorphology》2006,79(3-4):286
Understanding the time scales and pathways for response and recovery of rivers and floodplains to episodic changes in erosion and sedimentation has been a long standing issue in fluvial geomorphology. Floodplains are an important component of watershed systems because they affect downstream storage and delivery of overbank flood waters, and they also serve as sources and temporary sinks for sediments and toxic substances delivered by river systems. Here, 14C and 137Cs isotopic dating methods are used along with ages of culturally related phenomena associated with mining and agriculture to determine rates of sedimentation and morphologic change for a reach of the upper Mississippi River and adjacent tributaries in southwestern Wisconsin and northwestern Illinois. The most important environmental change that influenced fluvial activity in this region during last 10,000 years involved the conversion of a late Holocene mosaic of prairie and forest to a landscape dominated by cropland and pastureland associated with Euro-American settlement. Results presented herein for the Upper Mississippi Valley (UMV) show that the shift from pre-agriculture, natural land cover to landscape dominance by agricultural land use of the last 175–200 years typically increased rates and magnitudes of floodplain sedimentation by at least an order of magnitude. Accelerated overbank flooding led to increased bank heights on tributary streams and, in turn, contributed to more frequent deep flows of high energy. These high energy flows subsequently promoted bank erosion and lateral channel migration, and the formation of a historical meander belt whose alluvial surface constitutes a new historical floodplain inset against the earlier historical floodplain. The new historical floodplain serves as a “flume-like” channel that provides efficient downstream transport of water and sediment associated with moderate and large magnitude floods. Floodplains on lower tributaries, however, continue to experience rates of overbank sedimentation that are of anomalously high magnitude given improved land cover and land conservation since about 1950. This lower valley anomaly is explained by minimal development of historical (agriculture period) meander belts because of relatively low stream power in these channel and floodplain reaches of relatively low gradient. In general, long-term pre-agriculture rates of vertical accretion between about 10,000 and 200 years ago averaged about 0.2 mm yr− 1 in tributary watersheds smaller than about 700 km2 and about 0.9 mm yr− 1 on the floodplain of the upper Mississippi River where the contributing watershed area increases to about 170,000 km2. On the other hand, rates of historical vertical accretion during the period of agricultural dominance of the last 200 years average between 2 and 20 mm yr− 1, with short episodes of even higher rates during times of particularly poor land conservation practices. Significant hydrologic effects of mining and agricultural started by the 1820s and became widespread in the study region by the mid-19th century. The hydrologic and geomorphic influences of mining were relatively minor compared to those related to agriculture. High resolution dating of floodplain vertical accretion deposits shows that large floods have frequently provided major increments of sedimentation on floodplains of tributaries and the main valley upper Mississippi River. The relative importance of large floods as contributors to floodplain vertical accretion is noteworthy because global atmospheric circulation models indicate that the main channel upper Mississippi River should experience increased frequencies of extreme hydrologic events, including large floods, with anticipated continued global warming. Instrumental and stratigraphic records show that, coincident with global warming, a shift to more frequent large floods occurred since 1950 on the upper Mississippi River, and these floods generally contributed high magnitudes of floodplain sedimentation.  相似文献   

19.
黄河中游支流悬移质粒度与含沙量、流量间的复杂关系   总被引:16,自引:4,他引:12  
许炯心 《地理研究》2003,22(1):39-48
本文以黄河中游若干支流为例,研究了宽变幅水沙两相流河流悬移质泥沙的粒度特征。结果表明,宽变幅水沙两相流河流的悬移质泥沙粒度特征与含沙量、流量之间具有复杂的关系。就同一站点而言,随着含沙量和流量的增大,大于0.05mm的粗颗粒泥沙的百分比迅速减小,并达到最小值;当含沙量和流量进一步增大时,其百分比又迅速增大,表现出明显的双值关系。对于小于0.01mm细泥沙而言,情形正好相反。黄河中游不同的支流之间,悬移质泥沙粒度特征与年均含沙量的关系也是复杂的。这些变化图形可以用非高含沙水流与高含沙水流不同的物理力学行为来解释  相似文献   

20.
水沙条件对黄河下游河道输沙功能的影响   总被引:4,自引:3,他引:1  
许炯心 《地理科学》2004,24(3):275-280
提出河道输沙功能指标Fs为进入某一河道的泥沙总量(干流与支流输入沙量之和)与输出这一河道的泥沙量之比。河道输沙功能与来水量和来沙量有密切关系,若来水减少,来沙增多,则河道输沙功能减弱。来沙中大于0.05 mm粗泥沙含量百分比与河道输沙功能指标成负相关。来沙系数、特别是粗泥沙的来沙系数,是决定黄河下游输沙功能的重要因子;来沙系数越大,则河道输沙功能指标越低。场次洪水的输沙功能指标随场次洪水最大含沙量的增大而降低,历年河道输沙功能指标随各年中高含沙水流频率的增高而降低。小浪底水库修建后,为我们通过调水调沙提高河道输沙功能提供可能。研究表明,场次洪水平均含沙量35 kg/m3,或场次洪水平均来沙系数为(0.015 kg·s)/m6,是在调水调沙中实现河道输沙功能优化的最优含沙量和最优来沙系数,平滩流量则是实现河道输沙功能最大化的最优流量级。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号