共查询到19条相似文献,搜索用时 62 毫秒
1.
提出了一种自适应融合颜色特征和边缘特征的粒子滤波跟踪算法。首先,利用粒子滤波的天然框架,选择在红外条件下最能代表目标信息的颜色特征和边缘特征构造目标的多特征模型;然后,根据不同特征对目标与背景的可分性,对多特征模型中各特征分量的权值进行自适应调节;最后,借助动态空间模型,对粒子滤波跟踪算法进行改进,预测粒子的运动状态,从而克服环境突变对跟踪稳定性的影响。实验结果表明,本文算法能克服各种背景杂波及噪声的干扰,并能很好地解决目标在复杂背景下的尺度变化和突变运动带来的困难,保证了跟踪的鲁棒性和稳定性。 相似文献
2.
检测前跟踪(TBD)是在低信噪比下检测跟踪及定位目标的一种实用的技术,粒子滤波(PF)在处理非线性、非高斯的跟踪问题有独特优势。介绍了粒子滤波技术和检测前跟踪技术,给出了基于粒子滤波的检测前跟踪(PF-TBD)的算法模型,通过MATLAB仿真分析了PF-TBD算法在各种信噪比下检测性能和跟踪性能。 相似文献
3.
在抗差多因子自适应滤波的基础上,提出基于粒子群优化智能算法进一步搜索自适应因子的优化值,提高自适应因子的可靠性。在基于状态不符值构造的自适应因子的基础上,构造适应性函数,采用粒子群优化算法搜索更有效的自适应多因子。利用动态导航数据进行验证,结果表明,基于粒子群优化的多因子自适应滤波能更有效地控制异常影响,提高动态导航精度。 相似文献
4.
传统卡尔曼滤波算法要求噪声模型符合高斯分布,在UWB室内定位中,由于载体本身的机制等干扰,观测噪声不仅仅是白噪声,也存在有色噪声的情况,而粒子滤波可以处理有色噪声的问题。本文通过增加似然分布自适应调整来改进粒子滤波用于目标跟踪的精度,同时研究在白噪声、有色噪声下似然分布自适应调整粒子滤波和拓展卡尔曼滤波在UWB中的优势与不同。试验结果表明:观测噪声为白噪声时,拓展卡尔曼滤波和粒子滤波均可以较好地实现对行人的定位跟踪;观测噪声为有色噪声时,自适应粒子滤波定位效果优于粒子滤波、拓展卡尔曼滤波。 相似文献
5.
融合地磁/WiFi/PDR的自适应粒子滤波室内定位 总被引:1,自引:0,他引:1
随着国民经济的快速发展,人们在室内活动的时间越来越长,室内空间环境也越来越复杂,对室内环境的位置与导航服务的需求也越来越高。由于地磁信号具有稳定性的特点,且Wi Fi技术已得到广泛部署,融合使用地磁和Wi Fi定位具有一定的优势。因此,本文基于Android系统智能手机作为接收设备,融合地磁、Wi Fi及行人航迹推算(PDR)技术,通过自适应粒子滤波模型和随机抽样一致性算法对采集的信号进行处理。试验证明,地磁、Wi Fi、PDR三者融合进行室内定位的方法与其他单类方法相比,实现了将室内定位精度的误差最小降低到1.02 m。 相似文献
6.
一种改进的遥感图像自适应加权滤波算法 总被引:1,自引:0,他引:1
遥感图像在其获取、传输的过程中,受到多种因素的影响,会含有各种噪声而降质。文中在分析传统的去噪处理算法和自适应中值滤波算法的(AMF)基础上,提出了一种自适应加权的遥感图像去噪滤波方法。该算法针对噪声图像上每一点,应用自适应加权算子,对于不同的图像区域,算子自适应地进行窗口大小和输出像素值的改变。试验证明,该方法优于传统的去噪滤波算法和AMF滤波算法,在滤除噪声的同时尽可能地保留了图像细节,对于遥感图像去噪增强具有很好的效果。 相似文献
7.
8.
给出了利用EKF(extended Kalman)滤波和UKF(unscented Kalman)滤波提高神经网络泛化能力的方法。针对UKF参数选取随意性的问题,采用移动开窗估计法对状态噪声和观测噪声协方差矩阵进行自适应估计,提出了一种新的提高神经网络泛化能力的自适应UKF算法。利用检测样本进行了验证,结果表明,利用EKF、UKF和自适应UKF算法训练神经网络都能提高其泛化能力,其中自适应UKF算法优于其他几种算法。 相似文献
9.
改进的Sage自适应滤波方法 总被引:23,自引:3,他引:23
本文首先介绍了 Sage自适应滤波方法 ,分析了基于新息向量、残差向量和状态参数预报值改正向量的协方差自适应估计所存在的问题 ,提出了改进 Sage自适应滤波的新方法。结果表明 ,该方法能有效地控制状态方程异常对动态系统参数估值的影响 相似文献
10.
遥感图像在其获取、传输的过程中,受到多种因素的影响,会含有各种噪声而降质.文中在分析传统的去噪处理算法和自适应中值滤波算法的(AMF)基础上,提出了一种自适应加权的遥感图像去噪滤波方法.该算法针对噪声图像上每一点,应用自适应加权算子,对于不同的图像区域,算子自适应地进行窗口大小和输出像素值的改变.试验证明,该方法优于传统的去噪滤波算法和AMF滤波算法,在滤除噪声的同时尽可能地保留了图像细节,对于遥感图像去噪增强具有很好的效果. 相似文献
11.
12.
13.
一种次优并行Sage自适应滤波器 总被引:2,自引:0,他引:2
提出了一种新的次优Sage自适应卡尔曼滤波算法,该算法针对经典次优Sage滤波器经常存在的结果偏移现象,设计了一种附加伴随滤器的并行滤波结构,消除了结果偏移,提高了滤波精度。 相似文献
14.
干涉相干性包含了极化SAR干涉测量(PolInSAR)中的极化和干涉信息,滑动窗口大小和滤波方法是准确估计干涉相干性的前提。本文以精致极化Lee滤波为基础,根据边缘检测和邻域相干性高低区分同质区域和异质区域,建立了自适应精致极化Lee滤波方法并估计相干性矩阵和干涉相干性。自适应精致极化Lee滤波能够根据边缘检测信息和邻域相干性高低程度调整滑动窗口大小并选择合适的估计方法,不仅提高了抑制斑点噪声的能力,而且保持了图像的边缘信息,有利于提高干涉相干性的估计精度。试验结果表明,该方法有效抑制了斑点噪声,较好地保持了SAR图像的边缘信息,有利于提高植被参数反演的精度。 相似文献
15.
当动力学模型存在未知的随机系统偏差时,两阶段卡尔曼滤波要优于标准卡尔曼滤波。两阶段卡尔曼滤波的基础是准确的知道随机系统偏差的统计特性,这在实际过程中是很难做到的。提出了基于新息向量的自适应两阶段卡尔曼滤波。它不仅能够很好的估计随机系统偏差,而且在随机系统偏差的先验统计特性不准确时也能取得良好的效果。最后通过一个仿真算例,验证了自适应两阶段卡尔曼滤波的适用性。 相似文献
16.
模糊特征的选择影响着模糊分类的结果。从大量模糊特征中选择出有效特征进行分类,存在着一定的难度。粒子群优化算法(PSO)是基于群体智能的新型进化计算技术,具有自适应、自组织等智能特性,具有强大的寻找最优解的能力。将离散二进制PSO用于模糊特征选择,实现了基于PSO的模糊特征自适应选择方法,并通过航空和卫星遥感影像的模糊分类实验,验证了此方法的有效性。 相似文献
17.
18.
李炎寅 《测绘与空间地理信息》2020,(1):89-92
针对自适应卡尔曼滤波只适用于滤除高斯分布的白噪声,本文提出了融合小波变换和自适应卡尔曼滤波的算法。该算法利用小波变换的多尺度分解,将GPS高频的监测时间序列进行多层分解,重构出新的GPS监测时间序列,将其作为新的自适应卡尔曼滤波初始值,进行滤波处理。将融合算法的滤波结果与单一的自适应卡尔曼滤波结果进行对比分析,结果表明融合算法的滤波效果较为显著。同时,对融合算法滤除的噪声信息进行统计分析,结果表明融合算法滤除的噪声符合正态分布,进一步说明了该融合算法的有效性,为GPS的高频率、高精度的监测提供了技术支持。 相似文献
19.
廖明生 《武汉大学学报(信息科学版)》1991,16(1):49-55
本文将状态空间法用于递归型自适应数字滤波器的研究,引入滤波器系数灵敏度的概念作为性能评价的依据,并从低灵敏度的角度提出了平衡形和对称形两种新的自适应滤波器结构,实验结果显示了它们的优越性能。 相似文献