首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demand for coal from surface mining projects are on the higher side like never before for which blasting is the basic unit operation. The explosive plays an important role in blasting and also influence the explosive-rock interaction. The most common explosive type used in surface mines is emulsion explosives. This paper presents the study on the detonation velocity of bulk emulsion explosives due to variation in gassing agent and density. In this study Sodium Nitrite (NaNO2) has been used as the gas generating additive and the performance of emulsion explosives with different concentrations of gassing agents at different temperatures has been observed. This study was undertaken to also understand the cyclic variation of temperature on gassing kinetics and performance of explosive. The effect of cooling on detonic-behaviour of bulk emulsion explosives has also been studied and presented in this paper.  相似文献   

2.
In this paper, studies were conducted on the effect of borehole size on explosive energy loss in rock blasting. Since most industrial explosives are nonideal ones, the charge size and the confinement condition have significant impact on the detonation performance of these explosives. Analyses indicated that smaller boreholes will cause more loss of explosive energy than larger ones. This is especially true for most industrial explosives. The paper presents the analyses of energy loss for a number of different explosives with various borehole sizes. Based on these analyses recommendations and guidelines were given for borehole size determination in rock blasting operations.  相似文献   

3.
Summary Commercial explosives behave non-ideally in rock blasting. A direct and convenient measure of non-ideality is the detonation velocity. In this study, an alternative model fitted to experimental unconfined detonation velocity data is proposed and the effect of confinement on the detonation velocity is modelled. Unconfined data of several explosives showing various levels of non-ideality were successfully modelled. The effect of confinement on detonation velocity was modelled empirically based on field detonation velocity measurements. Confined detonation velocity is a function of the ideal detonation velocity, unconfined detonation velocity at a given blasthole diameter and rock stiffness. For a given explosive and charge diameter, as confinement increases detonation velocity increases. The confinement model is implemented in a simple engineering based non-ideal detonation model. A number of simulations are carried out and analysed to predict the explosive performance parameters for the adopted blasting conditions.  相似文献   

4.
Summary  A new model to predict the non-ideal detonation behaviour of commercial explosives in rock blasting is presented. The model combines the slightly divergent flow theory, polytropic equation of state, simple pressure-dependent rate law and statistical expressions to model the effect of confinement on detonation. The model has been designated as DeNE, an acronym for the Detonics of Non-ideal Explosives. It is aimed at predicting the detonation state and subsequent rarefaction (Taylor) wave to provide the pressure history for different explosive, rock type and blasthole diameter combinations. It enables the prediction and comparison of the performance of commercial explosives in different blasting environments. The unconfined detonation velocity data has been obtained from the testing of six commercial explosives to calibrate DeNE. A detailed sensitivity analysis has been conducted to evaluate the model. The model has been validated using the results of hydrocodes as well as measured and published in-hole detonation velocity data. Author’s address: Sedat Esen, Metso Minerals Process Technology (Asia-Pacific), Unit 1, 8–10 Chapman Place, Eagle Farm, Qld 4009, Australia  相似文献   

5.
The mineral industry is leading towards a technology driven optimization process. Drilling and blasting are such unit operations in a mine, which can alter the balance sheet of the mine if not planned properly. The development, improvement and utilization of innovative technologies in terms of blast monitoring instruments and explosives technology are important for cost effectiveness and safety of mineral industries.

The ever-growing demand for minerals has compelled the industry to adopt large opencast projects using heavy equipment. This has necessitated use of a few hundred tonnes of explosives in each blast. The bulk delivered fourth generation explosives have solved the problem of explosive loading to a large extent as it provides improved safety in manufacturing, transportation and handling. Bulk delivered emulsion is non-explosive until gasification is complete and a large quantity of explosive can be transported and loaded into blast holes efficiently and with safety. The priming of bulk delivered explosives in Indian mines uses the conventional PETN/TNT-based boosters. The conventional booster possesses safety problems in terms of handling and use, so Indian Explosives Ltd has developed an emulsion-based booster (Powergel Boost).

This paper explores the potential of an emulsion-based booster used as a primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made at a comparative study between the conventional booster and the emulsion-based booster in terms of the initiation process developed and their capability of developing and maintaining a stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument, the VODMate two channel system manufactured by Instantel Inc. of Canada. During this study three blasts were monitored. In each blast two holes were selected for study, the first hole was initiated using a conventional booster while the other one used an emulsion-based booster. The findings of the study advocates that the emulsion-based booster is capable of the efficient priming of bulk delivered column explosive with a stable detonation process in the column.  相似文献   

6.
空气间隔装药爆破机理研究   总被引:3,自引:2,他引:1  
朱红兵  卢文波  吴亮 《岩土力学》2007,28(5):986-990
利用爆轰波理论分析了空气间隔装药炮孔内一维不定常激波的相互作用及其在炮孔堵头、孔底的反射过程,同时分析了孔内各点的压力随时间的变化过程,介绍了空气间隔装药爆破的机理及设计参数。基于此,认为应充分利用空气间隔爆破结构的优势,并在梯段爆破中满足以下两个条件:(1)在设计过程中要尽量使稀疏波及从孔底反射的稀疏波传播过程能在整个孔内每一断面都作用到,即稀疏波到达孔底的时间要比从堵头反射的压力波到达孔底要早;(2)反射压力波应该到达空气与爆生气体接触面的时间比从孔底反射的稀疏波到达空气与爆生气体接触面的时间要早。由此通过计算得到了在梯段爆破工程中合理的空气层长度比例值约为30 %~42 %。计算结论与已有实测成果基本一致。  相似文献   

7.
Blast hole pressure is the starting point for many blast design calculations, but the way in which it is usually derived, from measured detonation velocity, indicates that more thought is needed as to its true meaning and implication. The general impression is given that the energy in the hole is defined by velocity of detonation (VoD), but this is rarely the case. VoD is defined by the energy released in the detonation driving zone between the shock front and the sonic (or CJ) surface, and for commercial explosives it is normal for reaction not to be complete within this zone. Reaction and energy delivery continues behind it, not reflected by VoD. Thus it would be more appropriate to use the theoretical VoD, not the measured VoD, to derive the starting pressure, since this would reflect the energy input of full reaction. In decoupled situations, the derivation of pressure at the blast hole wall using a polynomial decay concept is also of debatable value, and an alternative is offered.  相似文献   

8.
In the present study, the two-dimensional blast model has been simulated using finite element software Abaqus/CAE. The John–Wilkins–Lee equation of state has been used to calculate the pressure caused by the release of the chemical energy of the explosive. Detonation point from center of hole has been defined for the traveling path of explosive energy. Elastoplastic dynamic failure constitutive with kinematic hardening model was adopted for rock mass responses under high explosive pressure to understand the mechanism of blast phenomena. In this model, it is assumed that failure of rock occurs under tensile failure when yield plastic stress exceeded to its static tensile strength. The hydrostatic pressure was used as a failure measure to model dynamic spall or a pressure cut off. Variation of detonation velocity has been measured in terms of simulation blast output energies index results.  相似文献   

9.
Summary The excavation of underground tunnels close to existing substructures or the ground surface presents problems especially when blasting is being carried out. The high intensity waves which are generated and propagated through the rock medium, due to the detonation of explosives, may still have large amplitudes when they reach the ground surface. In order to study the vibration effects due to these propagating waves associated with blasting, a finite element simulation of tunnel blasting has been carried out in this paper.An example of a new tunnel excavated below an existing tunnel has been studied. Even though this problem is three dimensional in nature, due to the large computational efforts involved in three dimensional dynamic analysis, a two dimensional finite element analysis has been adopted. A pseudo-plane strain concept has been used since it has been found that the results obtained using such an approach are more realistic than the conventional plane strain analysis.It is concluded that results from such a numerical analysis could compliment the field investigations to produce guidelines for safe and controlled blasting.  相似文献   

10.
When designing above‐ground ammunition storage facilities, one has to take into account the debris hazard resulting from accidental explosions. The purpose of this paper is to develop a predictive method for debris dispersion around an ammunition storage site in case of an accidental detonation in a reinforced concrete storage structure. The concrete slabs/walls break up into debris when it is overloaded by the internal blast. The debris velocity is one of the important parameters to describe the debris dispersion. The parameters that affect the debris velocity are complex. This study adopts the energy approach to simplify the formulation. The failure process in a relatively thin concrete slab/wall is treated using the concept of expansion. Based on energy conservation, a general formula is derived for the debris launch velocity in a cubicle structure subjected to internal blast loading. The dynamic strength of concrete and reinforcement are considered in the fracture process. The analytical results are found to be consistent with the relevant experimental results. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
岩石中柱状装药爆炸能量分布   总被引:21,自引:0,他引:21  
吴亮  卢文波  宗琦 《岩土力学》2006,27(5):735-739
岩石中装药爆炸产生的爆破能量可分为爆炸冲击波能量和爆生气体膨胀能量。对爆炸能量分布的理论分析有助于改善爆破效果,提高爆破质量。在柱状耦合装药情况下,分析了冲击波作用下岩石变形和破坏的特点、爆生气体对爆腔的扩腔作用,考虑了在岩体的损伤情况下爆生气体对裂纹的驱裂作用。计算结果表明:埋深在临界深度以下时,岩石中柱状装药爆破冲击波做功消耗的能量约占爆炸总能量的40 %,剩余爆生气体能量中用于扩腔和扩展主要裂隙的能量约占总能量的23 %,剩余大约37 %的能量中有小部分能量用于新增裂纹数目,而大部分损失掉了。  相似文献   

12.
This paper presents a second-order work analysis in application to geotechnical problems by using a novel effective multiscale approach. To abandon complicated equations involved in conventional phenomenological models, this multiscale approach employs a micromechanically-based formulation, in which only four parameters are involved. The multiscale approach makes it possible a coupling of the finite element method (FEM) and the micromechanically-based model. The FEM is used to solve the boundary value problem (BVP) while the micromechanically-based model is utilized at the Gauss point of the FEM. Then, the multiscale approach is used to simulate a three-dimensional triaxial test and a plain-strain footing. On the basis of the simulations, material instabilities are analyzed at both mesoscale and global scale. The second-order work criterion is then used to analyze the numerical results. It opens a road to interpret and understand the micromechanisms hiding behind the occurrence of failure in geotechnical issues.  相似文献   

13.
Using multiphysics computer codes has become a useful tool to solve systems of partial differential equations. However, these codes do not always allow for the free introduction of implicitly defined state functions when automatic differentiation is used to compute the iteration matrix. This makes it considerably more difficult to solve geomechanical problems using non-linear constitutive models. This paper proposes a method for overcoming this difficulty based on multiphysics capabilities. The implementation of the well-known Barcelona basic model is described to illustrate the application of the method. For this purpose, without including formulation details addressed by other authors, the fundamentals of its implementation in a finite element code are described. Examples that demonstrate the scope of the proposed methodology are also presented.  相似文献   

14.
15.
Shallow buried explosives pose a significant threat to lightweight vehicles and their onboard personnel. To date, designers of lightweight vehicles are limited in their knowledge of what occurs during the blast. The high intensity, short term loading imparted by the explosion is enormously complex and can be significantly affected by a number of parameters including the size, shape, type, detonation point and depth of burial (DOB) of the explosive and the type, density and water content of the soil. Recent advancements in numerical simulations have enabled the complex blast event to be accurately modelled by coupling Eulerian and Lagrangian analyses: the former is well suited to modelling the blast and while the latter, the structural response. Further validation of the modelling technique is considered in the current paper, which details simulations performed utilising the coupled Eulerian-Lagrangian analysis to study the blast output of explosives buried in saturated sand. These experiments varied explosive charge size, its depth of burial, the target stand-off (SO) distance and the dimensions of the target plate. The investigation concludes with a discussion of the accuracy of the numerical simulations when compared with the experimental observations.  相似文献   

16.
Fully coupled, porous solid–fluid formulation, implementation and related modeling and simulation issues are presented in this work. To this end, coupled dynamic field equations with u?p?U formulation are used to simulate pore fluid and soil skeleton (elastic–plastic porous solid) responses. Present formulation allows, among other features, for water accelerations to be taken into account. This proves to be useful in modeling dynamic interaction of media of different stiffnesses (as in soil–foundation–structure interaction). Fluid compressibility is also explicitly taken into account, thus allowing excursions into modeling of limited cases of non‐saturated porous media. In addition to these features, present formulation and implementation models in a realistic way the physical damping, which dissipates energy. In particular, the velocity proportional damping is appropriately modeled and simulated by taking into account the interaction of pore fluid and solid skeleton. Similarly, the displacement proportional damping is physically modeled through elastic–plastic processes in soil skeleton. An advanced material model for sand is used in present work and is discussed at some length. Also explored in this paper are the verification and validation issues related to fully coupled modeling and simulations of porous media. Illustrative examples describing the dynamical behavior of porous media (saturated soils) are presented. The verified and validated methods and material models are used to predict the behavior of level and sloping grounds subjected to seismic shaking. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The ISA-plasticity is a mathematical platform which allows to propose constitutive models for soils under a wide range of strain amplitudes. This formulation is based on a state variable, called the intergranular strain, which is related to the strain recent history. The location of the intergranular strain can be related to the strain amplitude, information which is used to improve the model for the simulation of cyclic loading. The present work proposes an ISA-plasticity-based model for the simulation of saturated clays and features the incorporation of a viscous strain rate to enable the simulation of the strain rate dependency. The work explains some aspects of the ISA-plasticity and adapts its formulation for clays. At the beginning, the formulation of the model is explained. Subsequently, some comments about its numerical implementation and parameters determination are given. Finally, some simulations are performed to evaluate the model performance with two different clays, namely a Kaolin clay and the Lower Rhine clay. The simulations include monotonic and cyclic tests under oedometric and triaxial conditions. Some of these experiments include the variation of the strain rate to evaluate the viscous component of the proposed model.  相似文献   

18.
This work reports an efficient bulk formulation of sea surface drag that incorporates effect of dynamic stability under varied atmospheric forcing. The proposed formulation exhibits a polynomial dependence of wind speed on air–sea temperature difference based on statistical analysis. Quality checked meteorological and oceanographic data from four shallow water buoys located off Korean seas having measurements at an interval of every 1 h were used for this study. The analyses of in situ records for this region suggest stability ranging from highly stable to very unstable conditions. Importance of this proposed formulation is better reflected during unstable condition where other popular bulk formulations fail. In addition, importance and impact of such a study on wind-wave growth using the state-of-art wave model was also investigated. Finally, we advocate a new drag formulation, which accounts for varied atmospheric stability and suggest that this should be considered as an essential pre-requisite for ocean modeling studies.  相似文献   

19.
Momentum and energy exchange at air–sea interface through wind stress is very important for air–sea interaction studies, ocean modeling, and climate studies. The accurate representation of wind stress, in terms of drag coefficient, is a key factor in estimating the momentum transfer at the interface. The drag coefficient, in general, estimated using bulk formulae does not take into account the influence of wave age. This study examines the dependence of wave age on computed surface drag coefficient obtained by combining the Toba 3/2-power law with Froude number scaling, resulting in a new drag formulation (hereafter referred as RP formulation). We demonstrate that our proposed formulation is in good conjunction with established theories for both young and mature waves. Our investigation shows the theoretical formulation advocated earlier by Guan and Xie (hereafter referred as GX) overestimated the surface drag for mature waves as wind speed tends to increase. In addition, the formulation by GX was not verified by observational data. In the present work, for validation purpose, we use time series measurement of meteorological and oceanographic data from a deep water location in the Indian Ocean which was tested with both RP and GX formulations. We find that the proposed RP formulation, which embeds the 3/2 power of wave-age, shows a better match for both young and mature waves with the results of Janssen compared to the hypothesis of conventional wave age used by GX.  相似文献   

20.
张向鹏 《西北地质》2010,43(2):44-47
针对戈壁地区松散的砾石层地震信号衰减快、频率降低和能量减弱的特点,以及煤层倾角大、煤层埋藏深度变化大和潜水面的影响,笔者对戈壁地区煤田地震勘探的野外采集技术难点进行了分析探讨,并提出相应的技术对策:1地表条件复杂、潜水位变化大的地区采用汽车钻机成孔。2煤层埋藏深度小、倾角小于15°的地区采取小排列、小药量、中点放炮激发。3煤层埋藏深度大、倾角大于15°的地区采取大排列,能量足够情况下,采用小药量、端点放炮激发。最后通过实例补充说明。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号