首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Abstract

Small- and medium-sized basins are widely distributed, and some contain commercial gas reservoirs demonstrating their gas-generation potential. The Xuanhua Basin, which is a small-sized coal-bearing basin in north China, includes a promising target for shale-gas exploration in the Xiahuayuan Formation. In this study, we used this basin as a case study to assess the critical geochemical features for small or medium-sized basins to form commercial gas reservoirs. Total organic carbon (TOC) analysis, Rock-Eval pyrolysis, microscopic observation of macerals, vitrinite reflectance measurement and kerogen stable carbon isotope analysis were performed to characterise the organic geochemistry of the Xiahuayuan shales. The original total organic carbon (TOCo) content and hydrocarbon-generative potential (S2o) were reconstructed to further evaluate the gas-generation potential of these shales. In addition, geochemical data of shales from other similar-sized basins with gas discoveries were compared. The results showed that the kerogen from the Xiahuayuan Formation is Type III (gas-prone), and macerals are dominated by vitrinite. TOC values showed a strong heterogeneity in the vertical profiles, with most higher than 1.5?wt%. The measured Ro values ranged from 1.4 to 2.0%. However, thermal maturity was not correlated with the present-day burial depth with higher maturity in the wells closest to the diabase intrusion centre. The remaining generation potential (S2) averaged 0.91?mg HC/g rock, equal to 1.4?cm3 CH4/g rock, and the average amount of hydrocarbon generated was 4.33?cm3 CH4/g rock. In small and medium-sized basins, the TOC content of commercially developed gas shales ranged from 0.5 to 2.5?wt%, organic matter was mainly humic (gas-prone), and the burial depth was generally shallow. Biogenic gas reservoirs for commercial exploitation tend to have larger shale thicknesses (120–800?m) than thermogenic gas reservoirs (60–90?m).
  1. The Xiahuayuan Formation is a good gas-source rock with gas-prone kerogen type, relatively high TOC values and moderate thermal maturity.

  2. The average amount of hydrocarbon generated from the Xiahuayuan shales is about 4.33?cm3 CH4/g rock, indicating a potential to form a shale gas reservoir.

  3. Owing to the influence of diabase intrusions, the Xiahuayuan shales have entered the dry gas window at relatively shallow-buried depths.

  4. Small- and medium-sized basins have the potential to generate commercial gas reservoirs with the generated volume mainly a product of the thickness and maturity of black shales.

  相似文献   

2.
Nine rock samples from three Jurassic stratigraphic units of a shallow core from NW Germany were analyzed by pyrolysis-gas chromatography. The units contain a mixed Type-II/III kerogen (Dogger-α), a hydrogen-rich Type-II kerogen (Lias-), and a hydrogen-poor Type-III kerogen (Lias-δ). All of the kerogen was immature (Ro = 0.5%). Two sets of kerogen concentrates (“AD”: HCl/HF followed by a density separation, and “A”: only acid treatment) prepared from the rock samples were also analyzed to make a detailed comparison of the pyrolysates of rock and corresponding kerogen-concentrates.Hydrogen-index (HI) values of the kerogen concentrates prepared from organic-carbon poor rock were nearly 200% higher than HI values of the rock samples. Changes in HI were minimal for the samples containing Type-II kerogen. The A and AD samples from the Corg-poor rock yielded pyrolysates with n-alkane series of very different molecular lengths. Pyrograms of the rock samples had n-alkane series extending to n-C14; the chromatograms of the A samples reached the n-C14-nC20 range. The AD samples from Corg-poor rock and all three sample types from the Corg-rich rock had n-alkane series up to n-C29. The benzene/hexane and toluene/heptane ratios for the Corg-poor rock and A samples were far higher than for the AD samples, which had ratios similar to those of all three sample types from the Corg-rich rocks. These results indicate that choice of kerogen preparation method is critical when Corg-poor samples are analyzed.  相似文献   

3.
Phenanthrene (PHE) and methylphenanthrenes (MPs) extracted from coaly shale and coal samples containing terrestrial organic matter are compared with the same compounds from marine shales in terms of yields and δ13C values at marginally to fully mature stages of thermal evolution. The shales derived from four boreholes in the Hils Half-Graben area, northwestern Germany, were shown to be representative of a greater number of samples from the same sites. The δ13C values of extractable PHE and MPs are less negative in the terrestrial (−24.3 to −26.0‰) than in the marine (−28.8 to −30.5‰) samples. Since these values are unrelated to mean vitrinite reflectance (Rr) values in the range of 0.5–0.9%, it appears that the stable carbon isotope composition of PHE and MPs is controlled by organic matter type rather than maturity.  相似文献   

4.
《Organic Geochemistry》1987,11(5):351-369
The amount of “gas-prone” kerogen (woody, fungal and “inert”) and the organic carbon content (TOC) are the two predominant factors affecting the hydrogen index (HI) in the 226 samples of lacustrine and marine oil shales and source rocks studied. HI decreases as a function of the amount of “gas-prone” kerogen and increases as a function of TOC. In addition, the type of amorphous kerogen influences the hydrogen index, and this can be roughly estimated from the fluorescence intensity of the amorphous kerogen. Nearly eighty percent of the variation in HI in these samples can be accounted for by the percentage of “gas-prone” kerogen, the TOC content, and the fluorescence of the amorphous kerogen in a multiple regression analysis.Hydrogen index increases as a function of TOC up to about 10% TOC (the relationship can be approximated by a quadratic equation) and then levels off. A possible explanation for this is that the capability of a rock to generate and expel hydrocarbons during pyrolysis increases with TOC. When the retention capacity of the rock matrix is saturated (at about 10% TOC) further increases in TOC have no effect on HI. It is also possible that the quality (i.e. oil-proneness) of the amorphous kerogen is poorer in low TOC samples than in high TOC samples.The samples came from the following oil shales and source rocks: Rundle (Queensland Eocene-Miocene), Mae Sot (northwestern Thailand, Eocene-Pliocene), River River (northwestern Colorado, Eocene), Toolebuc (western Queensland, Late Albian), the “Posidonienschiefer” (southwestern Germany, Toarcian), an Argentinian lacustrine deposit (Eocene-Miocene), the Kimmeridgian sections from four North Sea wells (blocks 21, 30, and 210), Monterey Shale (California, Miocene), and sections from six wells from the Alaskan Tertiary (North Slope, North Aleutian Shelf, Navarin Basin, Norton Sound). Most samples appear to be thermally immature (T.A.I. less than 1.8; Ro less than 0.6%) so they should be considered only potential source rocks.The lacustrine oil shales have a higher conversion ratio (yeild/TOC or S1 + S2/TOC) than do the marine oil shales in samples with only amorphous and algal kerogen. These, in turn, have a higher conversion ratio than the marine source rocks. These differences are roughly reflected in the fluorescence intensity of the amorphous kerogen. Free hydrocarbons are higher in the marine source rocks than in the marine oil shales, and are lowest in the lacustrine oil shales.  相似文献   

5.
The presence of partially oxidized algal organic matter in oil-prone marine source rocks, is the rule rather than the exception. Partially oxidized, algal kerogen can still act as a significant source of liquid hydrocarbons. However, the corresponding peak of C12 + hydrocarbon generation is shifted to a considerably lower maturity level compared with that of the classical Type II kerogen. The extent of primary alteration-oxidation of marine algal kerogen is monitored by means of solid state microfluorescence spectroscopy. A new parameter, the Primary Alteration Factor (PAF) is established, and the relationships between PAF and H/C, O/C, HI, TOC and between PAF and %0δ13C are determined. The present data show large variations in the bulk chemistry of immature marine algal kerogens, and reveal evidence for gradational dehydrogenation/oxidation of the source organic matter. This contrasts with the recently proposed mechanism for kerogen formation. SEM analysis reveals a relationship between the physical breakdown of algal organic matter and the formation of liptodetrinite. FTIR analysis shows that the incorporation of primary oxygen in the kerogen macromolecules is not in the form of carbonyl or carboxyl functionalities. The presence of highly unreactive, stable oxygen, associated with aromatic structures in partially oxidized algal kerogen, is suggested by resistance of the kerogen to graphitization. The FTIR data also suggest the presence of aryl ether oxygen. The present findings raise fundamental questions regarding the mechanisms of kerogen cracking and kerogen formation, and have important implications for petroleum exploration.  相似文献   

6.
A reversal of the conventional carbon isotope relationship, “terrestrial-lighter-than-marine” organic matter, has been documented for two Pennsylvanian (Desmoinesian) cyclothemic sequence cores from the Midcontinent craton of the central United States. “Deep” water organic-rich phosphatic black shales contain a significant proportion of algal-derived marine organic matter (as indicated by organic petrography, Rock-Eval hydrogen index and ratios) and display the lightest δ13C-values (max −27.80‰ for kerogen) while shallower water, more oxic facies (e.g. fossiliferous shales and limestones) contain dominantly terrestrial organic matter and have heavier δ13Ckerogen-values (to −22.87‰ for a stratigraphically adjacent coal). δ13C-values for extract fractions were relatively homogeneous for the organic-rich black shales with the lightest fraction (often the aromatics) being only 1‰, or less, more negative than the kerogen. Differences between extract fractions and kerogens were much greater for oxic facies and coals (e.g. saturates nearly 5‰ lighter than the kerogen).A proposed depositional model for the black shales calls upon a large influx of nutrients and humic detritus to the marine environment from the laterally adjacent, extremely widespread Pennsylvanian (peat) swamps which were rapidly submerged by transgression of the epicontinental seas. In this setting marine organisms drew upon a CO2-reservoir which was in a state of disequilibrium with the atmosphere, being affected by isotopically light “recycled-CO2” derived from the decomposition of peaty material in the water column and possibly from the anoxic diagenesis of organic matter in the sediments.  相似文献   

7.
In this article, we describe the geological features of the Ediacaran (upper Sinian), lower Cambrian and lower Silurian shale intervals in the Upper Yangtze Platform, South China, and report on the gas potential of 53 samples from these major marine shale formations. Reflected light microscopy, total organic carbon (TOC) measurement, Rock-Eval, carbon isotope ratio analysis, thermovaporization gas chromatography (Tvap-GC), and open pyrolysis gas chromatography (open py-GC) were used to characterize the organic matter. Measured TOC in this research is normally >2% and averages 5%. TOC contents are roughly positively correlated with increasing geological age, i.e. lower Silurian shales exhibit generally lower TOC contents than lower Cambrian shales, which in turn commonly have lower TOC contents than Ediacaran shales. Kerogen has evolved to the metagenesis stage, which was demonstrated by the abundant pyrobitumen on microphotographs, the high calculated vitrinite reflectance (Ro = 3%) via bitumen reflectance (Rb), as well as δ13 C of gas (methane) inclusions. Pyrolysates from Tvap-GC and open py-GC are quantitatively low and only light hydrocarbons were detected. The lower Silurian shale generally exhibits higher generation of hydrocarbon than the lower Cambrian and Ediacaran shale. Cooles’ method and Claypool’s equations were used to reconstruct the original TOC and Rock-Eval parameters of these overmature samples. Excellent original hydrocarbon generation was revealed in that the original TOC (TOCo) is between 5% and 23%, and original S1+S2 (S1o+S2o) is ranging from 29 to 215 mg HC/g rock.  相似文献   

8.
The southern Bida Basin in central Nigeria forms a part of the larger Bida or Middle Niger Basin, which is contiguous with the south east trending (petroliferous) Anambra Basin. These basins were major depocenters for Campanian–Maastrichtian sediments in southern and central Nigeria prior to the build up of the Tertiary Niger delta. The successions in the southern Bida Basin consist of the basal Lokoja Formation, overlain by the Patti Formation and capped by the Agbaja Formation. The Lokoja Formation is a sequence of matrix supported conglomerates and sandstones overlying the Pre-Cambrian to Lower Paleozoic basement. Depositional environments are predominantly within fluvial systems of a continental setting. The Patti Formation consists of dark grey carbonaceous shales; mudstone and siltstones representing flood plains to shallow marine deposits with likely organic rich intervals. The overlying Agbaja Formation is made up of ferruginised oolitic and kaolinitic mudstone of a marginal marine environment. Twenty samples of shales of the Patti Formation were studied by incident light microscopy and geochemical analysis to determine the maceral components, geochemical type and potential yield of the pyrolysate. Maceral analysis indicate a large abundance of vitrinite (50–85%; mean = 66%); moderate abundance of liptinites (10–33%; mean = 18%) and lesser amounts of inertinite (9–40%; mean = 16%). Total organic carbon (TOC) values vary from 0.17 to 3.8 wt.% (mean = 2.1 wt.%) with most samples having greater than 2 wt.% TOC. Three of the samples yield greater than 2 kg(HC)/ton of rock suggesting a fair source rock potential. Most of the samples are thermally immature to marginally mature with vitrinite reflectance ranging from 0.4 to 0.6% Rom and Tmax values of 407–426 °C. Given the prevalence of the humic Type III kerogen, maturity and hydrocarbon potential yields, we conclude that the Patti Formation source rock facies have moderate to fair potential for gaseous hydrocarbons which have not yet been generated at the present day outcrop levels but could be important gas source where buried down-dip.  相似文献   

9.
This study presents data on the composition of organic matter from the Late Silurian sediments of the Chernov uplift. These sediments are characterized by low Corg contents, which may reach 1–3% in individual layers. A relatively high thermal maturity of organic matter is confirmed by polycyclic biomarker distributions and Rock-Eval pyrolyisis data. Despite its higher thermal maturity level (T max = 456°C), kerogen in carbonaceous shales from the Padymeityvis River exhibits good preservation of long-chain n-alkyl structures, which are readily identified in the 13C NMR spectra and by the molecular analysis of the kerogen pyrolysis products.  相似文献   

10.
Surma Group is the most important geological unit of Bengal basin, Bangladesh, because petroleum resources occur within this group. It is mainly composed of alternation of shale and sandstone and the shale fraction has long been considered as source rocks and the sandstone fraction as reservoir. These source and reservoir rocks have been studied by different authors by different approach but none of them adopted organic geochemistry and organic petrology as a means of study of source rock and their possible depositional environment. A total of thirty shale core samples have been collected from eight different gas fields to fulfill the short coming. The collected samples have been subjected to Source Rock Analysis (SRA) and/or Rock-Eval (RE) followed by pyrolysis gas chromatography (PyGC), gas chromatography mass spectrometry (GCMS), elemental analysis (EA) and organic petrological study such as vitrinite reflectance measurement and maceral analysis. The analyzed organic matter extracted from the shales of Surma Group consists mainly of Type III along with some Type II kerogen. The studied shales are mostly organically lean (TOC ±1%) and the extracted organic matter is fair to moderate. Based on these results, the analyzed shales have been ranked as poor (mostly) to fair quality source rock. The organic matter of the analyzed shale samples is thermally immature to early mature for hydrocarbon generation considering their Tmax and measured mean vitrinite reflectance values. The hopane 22S/(22S + 22R), moretane/hopane ratio and sterane parameters are also in good agreement with these thermal maturity assessments. The predominance of odd carbons over even carbons (most common) and/or even carbons over odd carbon numbered n-alkanes, moderate Pr/Ph ratio, low to high Tm/Ts ratio, comparative abundance of sterane C29 (i.e., C29 >C27>C28), Pr/nC17 — Ph/nC18 values, C/S ratio and dominance of vitrinite macerals group with the presence of liptinite macerals demonstrate that the organic matter has derived mainly from terrestrial inputs with an insignificant contribution from the marine sources. The condition of deposition alternates from oxic to anoxic.  相似文献   

11.
一种页岩含气性热演化规律研究的模拟实验方法   总被引:1,自引:1,他引:1  
目前针对页岩气赋存规律研究的热模拟实验主要是沿袭常规油气热模拟方法,以粉末态样品开展模拟,研究对象为岩石生成并排出的烃类气体,这种模拟方式未明确页岩气的实质为"滞留气",并且模拟后样品无法开展扫描电镜分析,不能确定岩石孔隙结构变化规律。本文通过石英玻璃管封装块状样开展页岩生烃热模拟实验,并结合一套数据处理方法,尝试建立了一种适合页岩气研究的热模拟实验方法,研究泥页岩在不同演化阶段(Ro范围为0.596%~2.143%)不同赋存状态气体的含量以及岩石微观孔隙特征的变化情况。结果表明,泥岩及油页岩样品的排出气及解析气含量在高成熟度阶段(400℃以后)有明显增加的趋势,结合扫描电镜微观结构分析显示这是由于有机质生气量以及无机孔隙均有增加。本方法可以研究页岩热演化过程中不同赋存状态气体含量及微观孔隙结构的变化,为页岩气勘探开发提供了一种可参考的方法。  相似文献   

12.
Thermogravimetric Fourier transform infrared spectroscopy (TG-FTIR) analyses were carried out on two sets of isolated kerogens covering a wide maturity range from low mature (0.46% Ro) through the end of oil and gas generation (maximum Ro = 5.32%). Data onweight percent and Tmax for evolution of methane, volatile tars, ethylene, SO2, NH3, CO2, and CO are reported. The Tmax of methane shows the most consistent response to increasing maturation in both sets of samples. Results are comparable to those of whole rocks from an Alaskan North Slope well analyzed previously. The collective data for both whole rocks and isolated kerogens shows a generally linear correlation between %Ro and Tmax of methane, with the exception of Ro of about 2.0% where a dip in the curve occurs. The slope of the correlation line was steeper for the predominantly terrigenous Wilcox kerogen than for more marine Colorado kerogen or for the Alaskan North Slope whole rock samples, probably reflecting differences in the chemical nature of various kerogen sets, which is also reflected by differences in the shapes of the pyrolysis curves of SO2, CO2, CO, H2O, and ethylene. These preliminary data indicate that Tmax of methane is a good maturation indicator for whole rocks and isolated kerogens up to an Ro of about 4%, which includes all of the wet gas and a considerable portion of the dry gas generation zones. This correlation was also observed for samples containing migrated bitumen, where it was not possible to obtain a reliable Tmax for the volatile tar (S2) peak. The more terrigenous Wilcox kerogens also showed a good correlation of the Tmax of ethylene with %Ro. Tmax of ammonia evolution did not correlate with maturity and occurred 100–200°C lower than previously found for whole rocks, consistent with a whole-rock source of pyrolytic ammonia for Alaskan whole rock samples. HI and OI indices were calculated in several ways and plotted to reflect kerogen type as well as both the residual oil and gas generation potential. The ratio of pyrolyzable to combustible sulfur (evolved as SO2) was independent of maturity and showed a clear difference between the more terrigenous Wilcox kerogens and the more marine Colorado kerogens.  相似文献   

13.
The isotopic composition of carbon from the organic matter of late Jurassic oil shales from the Volgian-Pechora shale province is studied. The existence of a dependence between Corg content in the rock and the isotopic composition of kerogen carbon is ascertained. The content of the heavy carbon isotope increases with increasing Corg. This dependence is accounted for by the progressive accumulation of isotopically heavy hydrocarbons of the initial organic matter due to sulfurization. The data on the isotopic composition of individual n-alkanes of bitumen in the rocks and the data on the absence of isotopic fractionation between thermobitumen and the residual kerogen from oil shales from the Volgian-Pechora shale province obtained by treating shale in an autoclave in the presence of water are presented first in this paper.  相似文献   

14.
Marine black shales of the Lower Cambrian Niutitang Formation in southern China host Mo–Ni–platinum group elements (PGE) mineralization confined to a phosphate- and pyrite-rich stratiform body (max. 20-cm thick). The H/C atomic ratio, carbon isotopic composition, FTIR spectra of bulk organic matter, and spectra of extractable part of organic matter indicate similar sources and thermal evolution of organic matter in barren and mineralized black shales.The morphology and relative abundance of organic particles in barren and mineralized shales are different. In barren black shales, organic particles comprise only elongated bodies and laminae 2–10 μm across or elongated larger bodies (> 10 μm) with Rmax = 2.96–5.21% (Type I particles). Mineralized black shales contain Type I particles in rock matrix (90–95 vol%), small veinlets or irregular organic accumulations (Type II particles, 1–5 vol%) that display weak to well developed mosaic texture and a variable reflectance (Rmax = 3.55–8.65%), and small (< 1 to 5 μm) rounded or irregular Type III organic particles (1–4 vol%) distributed within phosphate nodules and sulphide rip-up clasts. Type III particles show similar reflectance as particles of Type I in rock matrix. Type I particles are interpreted as remnants of in situ bacterially reworked organic matter of cyanobacteria/algal type, Type II as solidified products or oil-derived material (migrabitumen), and Type III particles as remnants of original organic matter in phosphatized or sulphidized algal/microbial oncolite-like bodies. Equivalent vitrinite reflectances of Type I and III particles in barren and mineralized rocks are similar and correspond to semi-anthracite and anthracite. Micro-Raman spectra of organic particles in rocks display a wide belt in the area of 1600 cm− 1 (G belt) and approximately the same belt in the area of 1350 cm− 1 (D belt). The ratio of integrated areas of the two belts correlate with Rmax values.The Mo–Ni–PGE mineralized body is interpreted as to represent a remnant of phosphate- and sulphide-rich subaquatic hardground supplied with organic material derived from plankton and benthic communities as well as with algal/microbial oncolite-like bodies that originated in wave-agitated, shallow-water, nearshore environment.  相似文献   

15.
Twenty organic rich outcrop samples from the Belait and Setap Shale formations in the Klias Peninsula area, West Sabah, were analysed by means of organic petrology and geochemical techniques. The aims of this study are to assess the type of organic matter, thermal maturity and established source rock characterization based primarily on Rock-Eval pyrolysis data. The shales of the Setap Shale Formation have TOC values varying from 0.6 wt%–1.54 wt% with a mean hydrogen index (HI) of 60.1 mg/g, whereas the shal...  相似文献   

16.
Organic-rich from the Schei Point group (middle to late Triassic in age) and the Ringnes formation (late Jurassic) from the Sverdrup basin of the Canadian arctic archipelago have been geochemically evaluated for source rock characterization. Most samples from the Schei Point group are organic-rich (> 2% TOC and are considered as immature to mature oil-prone source rocks [kerogen types I, I–II (IIA) and II (IIA)]. These kerogen types contain abundant AOM1, AOM2 and alginite (Tasmanales, Nostocopsis, Leiosphaeridia, acritarch and dinoflagellate) with variable amounts of vitrinite, inertinite and exinite. Samples from the Ringnes formation contain dominant vitrinite and inertinite with partially oxidized AOM2, alginite and exinite forming mostly immature to mature condensate- and gas-prone source rocks [kerogen type II–III (IIB), III and a few II (IIA)]. Schei Point samples contain higher bitumen extract, saturate hydrocarbons and saturate/ aromatic ratio than the Ringnes samples. Triterpane and sterane (dominant C30) distribution patterns and stable carbon isotope of bitumen and kerogen suggest that the analyzed samples from the Schei Point group are at the onset of oil generation and contain a mixture of sapropelic (algal) and minor terrestrial humic organic matter. Sterane carbon number distributions in the Ringnes formation also suggest a mixed algal and terrestrial organic matter type. There are some variations in hopane carbon number distributions, but these are apparently a function of thermal maturity rather than significant genetic differences among samples. Pyrolysis-gas chromatography/mass spectrometry of the two samples with similar maturity shows that the Schei Point sample generates three times more pyrolyzate than the Ringnes sample. Both samples have a dominant aliphatic character, although the Ringnes sample contains phenol and an aromaticity that is higher than that of the Schei Point sample.  相似文献   

17.
Electron spin resonance (ESR) is evaluated as a method to study the thermal degradation of sedimentary organic matter which consists mainly of kerogen. Whole rock and separated kerogen samples were pyrolysed stepwise (ambient to 700°C at 50°C increments), extracted and analysed for elemental composition and ESR spectra at each step. Whole rock samples give rise to complex spectra which include those of paramagnetic metals and are therefore unsuitable in most cases for this purpose.The ESR parameters g value, ΔH and Ng differ for different types of immature organic matter. An increase in Ng,shift of g value to 2.0026–2.0028 and reduction in h are the main trends during pyrolysis and in natural heating of sedimentary organic matter.The peak generations of liquid and gaseous hydrocarbons coincide with maxima of free radical density. ESR spectroscopy in combination with complementary geochemical characterization of the sedimentary organic matter can serve to indicate maturity with respect to peak oil-gas generation.  相似文献   

18.
卟啉的研究现状及其应用   总被引:2,自引:0,他引:2  
在前人研究资料及作者近年来的研究成果的基础上,综述了卟啉化合物地球化学研究的现状,包括金属卟啉的类型,卟啉的化学结构系列,高度脱链基卟啉和高碳数咔琳等及其它们在沉积物(如油页岩、煤和现代沉积物)中的分布特征和成因机理。指出了今后需要加强研究的领域,如沉积物中新的金属卟啉类型探讨和卟啉化学结构的确定等。文章还综述了卟啉化合物地球化学指标在地质勘探中的应用,如:评价生油岩质量,油源对比,油气运移研究,古沉积环境研究和有机质热成熟度研究等。  相似文献   

19.
A series of methane (CH4) adsorption experiments on bulk organic rich shales and their isolated kerogens were conducted at 35 °C, 50 °C and 65 °C and CH4 pressure of up to 15 MPa under dry conditions. Samples from the Eocene Green River Formation, Devonian–Mississippian Woodford Shale and Upper Cretaceous Cameo coal were studied to examine how differences in organic matter type affect natural gas adsorption. Vitrinite reflectance values of these samples ranged from 0.56–0.58 %Ro. In addition, thermal maturity effects were determined on three Mississippian Barnett Shale samples with measured vitrinite reflectance values of 0.58, 0.81 and 2.01 %Ro.For all bulk and isolated kerogen samples, the total amount of methane adsorbed was directly proportional to the total organic carbon (TOC) content of the sample and the average maximum amount of gas sorption was 1.36 mmol of methane per gram of TOC. These results indicate that sorption on organic matter plays a critical role in shale-gas storage. Under the experimental conditions, differences in thermal maturity showed no significant effect on the total amount of gas sorbed. Experimental sorption isotherms could be fitted with good accuracy by the Langmuir function by adjusting the Langmuir pressure (PL) and maximum sorption capacity (Γmax). The lowest maturity sample (%Ro = 0.56) displayed a Langmuir pressure (PL) of 5.15 MPa, significantly larger than the 2.33 MPa observed for the highest maturity (%Ro > 2.01) sample at 50 °C.The value of the Langmuir pressure (PL) changes with kerogen type in the following sequence: type I > type II > type III. The thermodynamic parameters of CH4 adsorption on organic rich shales were determined based on the experimental CH4 isotherms. For the adsorption of CH4 on organic rich shales and their isolated kerogen, the heat of adsorption (q) and the standard entropy (Δs0) range from 7.3–28.0 kJ/mol and from −36.2 to −92.2 J/mol/K, respectively.  相似文献   

20.
《Applied Geochemistry》1993,8(3):245-254
The Porphyrin Maturity Parameter (PMP), which is derived from the vanadyl porphyrin distribution, is an excellent parameter for: (1) identifying the zone of hydrocarbon generation from marine source rock extracts; and (2) determining from oils the thermal maturity of their source rocks at expulsion.The PMP is measured using a methodology which is inexpensive, reliable and faster than earlier methods, allowing it to be used as a routine exploration tool. The PMP may be a more reliable maturity indicator for marine organic matter than some conventional methods such as vitrinite reflectance. Unlike most conventional maturity parameters guided by processes other than kerogen conversion, the reactions causing PMP evolution directly monitor the generation of bitumen and the concurrent thermal degradation of kerogen.Measurements on hydrous pyrolyzates from the Monterey Formation (offshore California), source rock bitumens from the Devonian-Mississippian Bakken Shale (Williston Basin), and Miocene Monterey equivalent source strata (San Joaquin Basin, California) illustrate the method. In all cases reviewed so far, PMP begins increasing at the onset of hydrocarbon generation and increases systematically and predictably as kerogen decomposition proceeds.In oils generated from high-S marine kerogens, PMP reflects the maturity of the source rock at the time of oil expulsion, provided that the oil does not undergo subsequent reservoior maturation or mixing with in-situ bitumen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号