首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对比云和降水表征的东亚夏季风活动   总被引:1,自引:0,他引:1  
利用1998~2007年候平均ISCCP(International Satellite Cloud Climatology Project)D1云资料和台站融合降水资料,定义了两类云指数和降水指数,分别反映东亚夏季风活动期间不同云类云量和降水量位置及强弱的变化。用云指数和降水指数研究了东亚夏季风在中国大陆的推进过程,发现两类指数均能表现东亚夏季风的停滞与北跳特征且具有时空上的一致性。基于云指数变化定义了中国东部华南、华东和华北三个区域季风活跃期、过渡期和中断期,检验了季风活跃期和中断期云指数的差异、500 hPa环流场和水汽场的差异,验证了用云表征季风活动的合理性。对比了用云指数和降水指数定义的季风活动期,发现两个指数定义的季风活跃期和中断期日数虽有差异但基本一致,二者的区别在于降水指数偏重于对降水特征差异的描述,云指数则更偏重于对不同类型云量差异的描述,二者的差异还反映了降水性质的差异。  相似文献   

2.
华南季风降水对应的环流指数   总被引:3,自引:0,他引:3       下载免费PDF全文
利用NCEP再分析资料及台站和格点降水量资料分析了华南季风降水与周边大气环流的关系,并由此建立了反映6月华南降水强度的季风指数,这一季风指数利用菲律宾及其以东与华南850 hPa涡度差定义。华南季风指数具有很好的区域代表性,华南季风指数与亚洲格点日降水量的主要正相关区集中在华南。华南季风指数可以很好地描述华南降水的年际变化和极端年份,季风指数强 (弱) 的年份也是华南降水偏多 (少) 的年份,极端的华南季风指数年份对应极端的华南降水年份。华南季风指数高与低年份对应的华南降水量差值通过了0.01的显著性检验。在年代际尺度上,季风指数强 (弱) 的年代与华南降水偏多 (少) 的年代有很好的对应关系。华南季风指数包含了西南季风、副热带高压以及中高纬度西风槽等各影响系统的信息,可在业务上使用。  相似文献   

3.
The results of numerical experiments with the model of the Institute of Numerical Mathematics, RAN, aimed to reveal variability of the atmospheric global circulation under changing content of carbon dioxide, are analyzed. Variability of monsoon circulation is considered for different scenarios of carbon dioxide content in the model atmosphere. The monsoon circulation indices calculated from the zonal-wind speeds simulated in the upper and lower troposphere and model precipitation rates are studied.  相似文献   

4.
Nepal’s precipitation is uncorrelated with the all-India monsoon precipitation. However, the quasi-decadal variability of precipitation is significant in the Nepal Himalayas but its mechanism has received little attention. Using a set of century-long reanalysis and observations of precipitation, spectral and empirical orthogonal function analyses were conducted to determine the role of the Pacific Quasi-Decadal Oscillation (QDO) in Nepal’s precipitation regime. The dynamical and moisture processes involved in the Pacific QDO of the monsoon precipitation in Nepal were also examined. The monsoon precipitation in Nepal is enhanced when southeasterly moisture fluxes, originated from the Bay of Bengal, divert towards the north and subsequently interact with the southern Himalayan foothills. The redirected moisture fluxes are modulated through the Pacific QDO and are embedded in a propagating global wave 1–2 circulation pattern. However, the modulation exhibits a phase shift of 2 years between the precipitation anomalies in Nepal and the extreme phases of the Pacific QDO. A phase shift of this nature ascribes to the low correlation skill between the Nepal precipitation and traditional monsoon indices, such as those of the El Niño-Southern Oscillation and the all-India precipitation. The lagged relationship between the monsoon precipitation and the Pacific QDO is unique to Nepal, the inclusion of which should improve the predictive ability for the Nepal monsoon.  相似文献   

5.
Subseasonal forecast skills and biases of global summer monsoons are diagnosed using daily data from the hindcasts of 45-day integrations by the NCEP Climate Forecast System version 2. Predictions for subseasonal variability of zonal wind and precipitation are generally more skillful over the Asian and Australian monsoon regions than other monsoon regions. Climatologically, forecasts for the variations of dynamical monsoon indices have high skills at leads of about 2 weeks. However, apparent interannual differences exist, with high skills up to 5 weeks in exceptional cases. Comparisons for the relationships of monsoon indices with atmospheric circulation and precipitation patterns between skillful and unskillful forecasts indicate that skills for subseasonal variability of a monsoon index depend partially on the degree to which the observed variability of the index attributes to the variation of large-scale circulation. Thus, predictions are often more skillful when the index is closely linked to atmospheric circulation over a broad region than over a regional and narrow range. It is also revealed that, the subseasonal variations of biases of winds, precipitation, and surface temperature over various monsoon regions are captured by a first mode with seasonally independent biases and a second mode with apparent phase transition of biases during summer. The first mode indicates the dominance of overall weaker-than-observed summer monsoons over major monsoon regions. However, at certain stages of monsoon evolution, these underestimations are regionally offset or intensified by the time evolving biases portrayed by the second mode. This feature may be partially related to factors such as the shifts of subtropical highs and intertropical convergence zones, the reversal of biases of surface temperature over some monsoon regions, and the transition of regional circulation system. The significant geographical differences in bias growth with increasing lead time reflect the distinctions of initial memory capability of the climate system over different monsoon regions.  相似文献   

6.
本文基于华北夏季降水数据、NCEP/NCAR再分析环流数据,采用了相关、合成和环流异常回归重构等方法,分析了东亚副热带夏季风指数、华北大气动力上升指数与华北夏季降水的关系。主要结果如下:1)东亚副热带夏季风指数、华北大气动力上升指数与华北夏季降水有很好的对应关系。当两个指数偏强时,华北夏季降水会异常偏多;两个指数偏弱,华北夏季降水异常偏少;如果两个指数强弱不一致时,华北会出现区域性降水偏多情况,但全区整体降水量基本为正常值。2)华北夏季降水异常是东亚副热带夏季风和华北大气动力上升运动协同作用的结果。在东亚副热带夏季风指数、华北大气动力上升指数偏强年,夏季500hPa层贝加尔湖槽会加深、西北太平洋副热带高压会偏北,华北处于“东高西低”的环流型控制下,西部低槽东移受阻,在华北维持较长时间的大气上升运动;850hPa层印度夏季风、东亚副热带夏季风会偏强,这时热带印度洋西风水汽输送以及东亚副热带地区偏南风水汽输送或东南风水汽输送会加强,华北水汽来源充足。这种高、低空环流配置非常有利于造成华北夏季降水异常偏多。反之,华北夏季降水会异常偏少。3)前期4—5月,东亚副热带夏季风指数、华北大气动力上升...  相似文献   

7.
东亚夏季风与中国夏季降水年际异常的分型研究   总被引:10,自引:0,他引:10  
以海陆气压差定义的夏季风强度指数为依据,讨论了东亚夏季风年际异常与中国夏季降水的关系,发现东亚夏季风强时,中国夏季降水可能多也可能少,但以少雨为主,季风弱时,中国降水也是或多或少,但以多雨为主,依此可以将季风与降水的异常关系分成强季风强降水(A),强季风弱降水(B),弱季风强降水(C),弱季风弱降水(D)四种关系,其中(A)型和(D)型,(B)型和(C)型的降水呈反相似性分布,主要特殊性反映在东北  相似文献   

8.
东亚季风指数分类初析   总被引:5,自引:0,他引:5  
江滢 《气象》2005,31(5):3-7
回顾了亚洲季风指数定义方法发展历程。将东亚季风强度指数按定义时所使用的要素类型分类为环流类、温湿类、海陆差异类、方程类和综合类,指出了各类指数的特点及适用范围,并为今后开展相关研究提出一些设想。  相似文献   

9.
1961~2009年中国季风区范围和季风降水变化   总被引:4,自引:2,他引:2  
姜江  姜大膀  林一骅 《大气科学》2015,39(4):722-730
东亚季风对中国气候和环境有重要影响, 以往研究多关注于季风环流和人为给定区域内夏季降水的变化, 对于季风区域变化本身及其相伴的季风降水鲜有涉及。本文使用四套降水观测资料, 其中包括基于2416个台站最新资料所得到的中国区域高分辨率降水格点数据, 集中分析了1961~2009年中国季风区范围、季风区西北边界、季风降水及其强度变化。结果表明, 季风区约占中国陆地面积的60%, 研究时段内总体上在缩少;季风降水无趋势性变化而是表现为一定的年际和年代际变率;中国季风降水强度平均为4.46 mm d-1。季风区西北部的东、西边界间区域属于典型的干湿交错带, 季风区西北边界在40°N以南整体上表现为-0.026°/a的西进趋势, 而在其北部则表现为0.041°/a的东退, 这主要是源于区域尺度热力对比、大气环流和水汽通量的变化所致。  相似文献   

10.
南海夏季风槽的年际变化和影响研究   总被引:7,自引:1,他引:7  
李崇银  潘静 《大气科学》2007,31(6):1049-1058
南海夏季风槽是南海夏季风的重要组成部分,它的活动不仅对大气环流和气候有明显影响,其本身也具有明显的年际变化特征。首先定义了一个描写南海夏季风槽强度的指数,然后分别对强、弱南海夏季风槽年的例子进行了合成分析。分析结果表明,对应强、弱不同的南海夏季风槽年份,在大气环流背景、对流活动以及海温背景场方面都有很明显的区别,说明南海夏季风槽的异常不是偶然的,有其十分明显的大背景。合成分析的结果还表明,南海夏季风槽的强弱异常不仅对中国夏季降水有重要影响,还会通过遥相关过程影响北半球的其他区域。  相似文献   

11.
选取适当的亚洲夏季风指数并对它们进行分类,结合1979-2020年长江中游地区夏季降水资料,分析了夏季风异常年份长江中游地区夏季大气环流和降水的特征。主要得出以下结论:(1)两类夏季风指数都与长江中游地区夏季降水呈负相关关系,并且第二类夏季风指数与长江中游地区夏季降水的相关关系更加显著,因此选取第二类夏季风指数来反映长江中游地区夏季降水特征。(2)长江中游地区的降水具有低频振荡特征,在第二类夏季风指数高值年和低值年,振荡的主周期都是32-64天。(3)第二类夏季风指数高值年和低值年的降水差异主要取决于西太平副高的强度和偏南季风的水汽输送。  相似文献   

12.
中国东北地区夏季旱涝的大气环流异常特征   总被引:26,自引:1,他引:26  
利用东北地区均匀分布的69个测站35年(1961~1995年)夏季月平均降水资料和NCEP/NCAR 1958~1997年月平均再分析资料,对我国东北地区夏季旱涝发生的大气环流异常特征及其差异进行了诊断分析研究.结果表明,东北地区旱涝年夏季,高纬和极区大气环流特征、东北亚异常长波槽脊的分布和活跃程度、东亚大槽和西太平洋副热带高压的位置和强度等均有十分明显的差别.不仅如此,该区域夏季降水异常还显著地受到亚洲季风诸系统的影响,包括南亚季风,也包括南海季风和副热带季风,并且高空西风急流的位置和强度也有明显变化.涡度、散度、垂直速度和水汽含量等物理量特征在旱涝年不仅有截然相反的分布,而且还表现出与低纬地区存在着不同的联系方式.位于菲律宾以东洋面上行星尺度的高层辐散和低层辐合也有一定不同,并且受热带地区大气加热强度变化的影响,东北地区所在经度上的经圈环流在旱涝年也发生了明显变化,从而对该区域降水异常产生影响.  相似文献   

13.
南半球环流异常与我国夏季旱涝分布关系及其影响机制   总被引:6,自引:0,他引:6  
利用1951—2000年NCEP/NCAR风场和高度场再分析资料及全国160站降水量资料, 采用奇异值分解、相关和合成分析方法, 研究6—8月南半球500 hPa高度、高低层纬向风距平差异常 (Δu850-Δu200) 与我国夏季旱涝分布的关系及其影响机制。结果表明:当500 hPa澳大利亚高压脊偏强及西南太平洋热带地区高低层纬向风距平差为负值时, 来自南半球冷空气活动偏弱, 有利于西北太平洋副热带高压位置偏南, 热带季风偏弱, 我国夏季雨带偏南。反之, 当澳大利亚高压脊偏弱及西南太平洋热带地区高低层纬向风距平差为正值时, 我国北方降水偏多。同时, 定义了澳大利亚冬季风指数, 指出澳大利亚冬季风强年和弱年影响我国夏季旱涝分布异常的水汽输送型式不同。  相似文献   

14.
Using two datasets of global pentad grid precipitation and global 850 hPa geopotential height during 1979-2007, this study identified global monsoon troughs and global atmospheric centers of action (ACAs) on a pentad scale. The global monsoon troughs consist of planetary-scale monsoon troughs and peninsula-scale monsoon troughs. Forced by seasonal variations in solar radiation, the inter-tropical convergence zones (ITCZs) represent the planetary-scale monsoon troughs, which are active and shift over the tropical North Pacific, the tropical North Atlantic, and the tropical South Indian oceans. The peninsula-scale monsoon troughs are originated from regional land-sea topography and varied with contrasts in seasonal land-sea surface temperatures and precipitation. During the boreal summer, five peninsula-scale troughs and one planetary-scale trough are distributed in the Asia-Northwest Pacific (NWP) region. In total, 22 troughs, nine monsoon troughs, and 19 ACAs in the lower troposphere were identified. Relevant ACAs may be useful in constructing regional monsoon and circulation indices.  相似文献   

15.
利用NCEP2.5°×2.5°再分析资料、NOAA的OLR资料、常规观测降水资料以及历史梅雨特征指数等资料,系统地分析了2011年梅汛期南亚高压、副热带高压、季风和对流系统等的演变特征,以揭示2011年梅雨期降水异常的成因。分析表明: 2011年入梅和出梅均偏早,旱涝急转迅速,降水集中,梅雨总量异常偏多;南亚高压和西太平洋副热带高压北跳、500 hPa西风带环流的调整、西南季风北涌至长江流域的时间均早于常年是2011年入梅偏早的原因。ITCZ的北抬伴随强热带风暴“米雷”北上引起副热带高压的北抬东退是出梅偏早的主要原因;南亚高压和副热带高压位置和强度迅速调整,同时中高纬度环流也快速调整,西南季风和水汽输送也由弱转强,使得长江中下游地区由受冬季风控制迅速转为冷暖气流的汇合地,且此期间大气层结不稳定,降水强度大。以上原因导致该区域出现迅速的旱涝急转;梅雨期间,西太平洋副热带高压和高空西风急流稳定偏强,强盛的季风涌、中高纬度冷空气和青藏高原对流扰动东传的有利配置导致了2011年梅雨总量异常偏多。  相似文献   

16.
The mean evolution of the Asian summer monsoon and its interannual variability have been studied using three simulations (from 1961 to 1994) with the ECHAM4 General Circulation Model (GCM). The results have been compared with observational data and with two reanalyses data sets: the ECMWF Reanalysis (ERA) and the NCEP-NCAR Reanalysis. The South Asian summer monsoon (SASM) has been studied in terms of mean precipitation and circulation patterns. The model is successful in simulating the mean circulation of the SASM, though precipitation is generally weaker than observed in India, but closer to the observed values over the Indian Ocean and the Philippines. The ECHAM4 model also shows a capability to capture the interannual variability of the monsoon as it is measured by two different indices, the EIMR (Extended Indian Monsoon Rainfall) index and the DMI (Dynamical Monsoon Index). An analysis of NINO3 SSTA anomalies and of the Asian summer monsoon indices showed that the model is able to capture rather well the interdecadal variation of the correlation between them. A large ensemble of 25 members, forced with interannually varying SST from 1979 to 1993, has been used to test the potential predictability of the Indian summer monsoon and the dependence of the skill on the ensemble size. Results indicate that a minimum ensemble size of 16 members is needed to capture the variability of the monsoon indices.  相似文献   

17.
Based on the ERA-40 and NCEP/NCAR reanalysis data,the NOAA Climate Prediction Center’s merged analysis of precipitation(CMAP),and the fifth-generation PSU/NCAR Mesoscale Model version 3(MM5v3),we defined a monsoon intensity index over the East Asian tropical region and analyzed the impacts of summer(June-July) South China Sea(SCS) monsoon anomaly on monsoon precipitation over the middle-lower reaches of the Yangtze River(MLRYR) using both observational data analysis and numerical simulation methods.The results from the data analysis show that the interannual variations of the tropical monsoon over the SCS are negatively correlated with the southwesterly winds and precipitation over the MLRYR during June-July.Corresponding to stronger(weaker) tropical monsoon and precipitation,the southwesterly winds are weaker(stronger) over the MLRYR,with less(more) local precipitation.The simulation results further exhibit that when changing the SCS monsoon intensity,there are significant variations of monsoon and precipitation over the MLRYR.The simulated anomalies generally consist with the observations,which verifies the impact of the tropical monsoon on the monsoon precipitation over the MLRYR.This impact might be supported by certain physical processes.Moreover,when the tropical summer monsoon is stronger,the tropical anomalous westerly winds and positive precipitation anomalies usually maintain in the tropics and do not move northward into the MLRYR,hence the transport of water vapor toward southern China is weakened and the southwest flow and precipitation over southern China are also attenuated.On the other hand,the strengthened tropical monsoon may result in the weakening and southward shift of the western Pacific subtropical high through self-adjustment of the atmospheric circulation,leading to the weakening of the monsoon flows and precipitation over the MLRYR.  相似文献   

18.
最优多因子动态配置的东北汛期降水相似动力预报试验   总被引:4,自引:0,他引:4  
基于中国气象局国家气候中心季节预报业务模式27a(1983—2009年)预报结果和同期美国气候预报中心组合降水分析(CMAP)资料及国家气候中心气候系统诊断预报室74项环流指数和NOAA40个气候指数(1951—2009年),提出了客观定量化的最优多因子动态配置汛期降水相似-动力预测新技术,并对中国东北地区汛期降水进行了预报试验。利用历史资料有用信息估算模式预报误差原理,选取4个历史相似年对应模式误差来估算当前模式预报误差。通过单因子交叉检验距平相关系数确定主导因子及演化相似因子,结合当前及前期优化多因子组合配置确定预报因子集,最后利用历史相似年对应模式误差来估算当前模式预报误差并订正国家气候中心季节预报业务模式的预报结果,得到预报的汛期降水。对2005—2009年进行独立样本检验的结果表明,此技术对中国东北地区汛期降水有一定预报技巧。证实了利用历史资料估计业务模式预报误差的另类途径是可行的,显示了在业务预报应用中的潜在能力。  相似文献   

19.
FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化   总被引:2,自引:2,他引:2  
利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。  相似文献   

20.
基于1979—2014年ERA-Interim逐月风场和水汽通量资料及GPCP逐月降水率资料,采用相关分析及合成分析等方法研究了夏季南海低空越赤道气流的变化特征及其与亚澳季风区降水异常的联系。结果表明:1)夏季南海低空越赤道气流强度的年际变化特征明显,具有3~4 a的周期。2)夏季南海低空越赤道气流强度变化与热带东印度洋和海洋性大陆区域降水异常具有显著的负相关关系、与热带西太平洋降水异常存在明显的正相关关系、与我国中部地区降水异常存在较好的负相关关系。3)当夏季南海低空越赤道气流强度偏强时,850 hPa上自阿拉伯海向东一直延伸到热带西太平洋为西风异常,这种环流形势有利于热带西太平洋出现水汽辐合,使得该区域降水出现明显偏多,同时热带东印度洋低层为东风异常,受其影响,热带东印度洋和海洋性大陆区域出现水汽辐散,使得该区域降水偏少;此外,在我国东南沿海为一个气旋式风场异常,不利于来自热带海洋的水汽输送到达我国中部地区,使得该地区降水偏少;反之亦然。4)当夏季南海低空越赤道气流偏强时,东亚地区局地Hadley环流表现为异常偏弱,低空偏南越赤道气流异常在20°N附近与来自北半球的冷空气交汇上升,赤道附近及30~40°N地区出现异常下沉运动,使得热带海洋性大陆区域和我国中部地区降水减少;反之亦然。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号