首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper focuses on the development of a linear analytical model (even though servo‐hydraulic actuation systems are inherently non‐linear, especially for large amplitude simulations — near the performance capacity of the system — linearized models proved experimentally to be quite effective overall in capturing the salient features of shaking table dynamics) of a uni‐axial, servo‐hydraulic, stroke controlled shaking table system by using jointly structural dynamics and linear control theory. This model incorporates the proportional, integral, derivative, feed‐forward, and differential pressure gains of the control system. Furthermore, it accounts for the following physical characteristics of the system: time delay in the servovalve response, compressibility of the actuator fluid, oil leakage through the actuator seals and the dynamic properties of both the actuator reaction mass and test structure or payload. The proposed model, in the form of the total shaking table transfer function (i.e. between commanded and actual table motions), is developed to account for the specific characteristics of the Rice University shaking table. An in‐depth sensitivity study is then performed to determine the effects of the table control parameters, payload characteristics, and servovalve time delay upon the total shaking table transfer function. The sensitivity results reveal: (a) a potential strong dynamic interaction between the oil column in the actuator and the payload, and (b) the very important effect of the servovalve time delay upon the total shaking table transfer function. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Time-delay causes unsynchronized application of the control forces which may not only degrade the performance of the control system but also even induce instability to the dynamic system. Time-delay control algorithm is developed in this paper to solve this practical problem. The control system is first formulated in discrete-time form. In the presence of time-delay, the motion equation of the discrete-time control system remains a difference equation which can be transformed into first-order difference equation by augmenting the state variables. Optimal time-delay control algorithm is derived based on the augmented system. The time-delay control forces are simply generated from the time-delay states multiplied by the constant feedback gain. Numerical simulation is illustrated to verify the feasibility of the proposed control algorithm. Since time-delay effect is incorporated in the mathematical model for the structural control system throughout the derivation of the proposed algorithm, system performance and dynamic stability are guaranteed.  相似文献   

3.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

4.
Simulating dynamic soil–structure interaction (SSI) problems is a challenge when using a shaking table because of the semi-infinity of soil foundations. This paper develops real-time dynamic hybrid testing (RTDHT) for SSI problems in order to consider the radiation damping effect of the semi-infinite soil foundation using a shaking table. Based on the substructure concept, the superstructure is physically tested and the semi-infinite foundation is numerically simulated. Thus, the response of the entire system considering the dynamic SSI is obtained by coupling the numerical calculation of the soil and the physical test of the superstructure. A two-story shear frame on a rigid foundation was first tested to verify the developed RTDHT system, in which the top story was modeled as the physical substructure and the bottom story was the numerical substructure. The RTDHT for a two-story structure mounted on soil foundation was then carried out on a shaking table while the foundation was numerically simulated using a lumped parameter model. The dynamic responses, including acceleration and shear force, were obtained under soft and hard soil conditions. The results show that the soil–structure interaction should be reasonably taken into account in the shaking table testing for structures.  相似文献   

5.
根据工业结构-设备体系动力相互作用特点,本文提出了利用主,子结构边界耦合矩阵变换的一般建模方法。通过本文作者完成的六种不同类型的结构-设备复合模型体系在我维地震动作用下振动台试验,总结了工业结构-设备动力相互作用的一般规律和特点。  相似文献   

6.
大型振动台模型试验是边坡动力响应和破坏模式研究的重要手段,其中相似材料的选择是决定试验能否成功的关键。以黄土地区2类典型边坡为研究对象,在对滑坡体原状土样开展室内土动力学测试的基础上,提出6种相似比条件下振动台模型试验相似材料的配比方法;对2种相似比条件下相似材料的参数进行量纲分析,依据相似判据、相似准则的约束,以模糊数学理论进行优化,并提出大型土质边坡振动台试验的材料相似性评价体系。  相似文献   

7.
根据软弱场地土上地铁车站结构大型振动台模型试验结果,以软件ABAQU S为平台,采用记忆型嵌套面黏塑性动力本构模型和动塑性损伤模型,分别模拟土体和车站结构混凝土的动力特性,建立了土-地铁车站结构非线性动力相互作用二维和三维有限元分析模型,对各种试验工况下地基土-地铁车站结构体系的地震反应进行了数值模拟,并与试验结果进行了对比。结果表明:二维、三维数值模拟与振动台模型试验结果基本一致,三维模型可更好地模拟软弱场地与地铁车站结构的动力相互作用及模型结构的动力反应。数值模拟结果和振动台试验结果可相互验证其可靠性。  相似文献   

8.
Real‐time substructuring is a method of dynamically testing a structure without experimentally testing a physical model of the entire system. Instead the structure can be split into two linked parts, the region of particular interest, which is tested experimentally, and the remainder which is tested numerically. A transfer system, such as a hydraulic actuator or a shaking table, is used to impose the displacements at the interface between the two parts on the experimental substructure. The corresponding force imposed by the substructure on the transfer system is fed back to the numerical model. Control of the transfer system is critical to the accuracy of the substructuring process. A study of two controllers used in conjunction with the University of Bristol shaking table is presented here. A proof‐of‐concept one degree‐of‐freedom mass–spring–damper system is substructured such that a portion of the mass forms the experimental substructure and the remainder of the mass plus the spring and the damper is modelled numerically. Firstly a linear controller is designed and tested. Following this an adaptive substructuring strategy is considered, based on the minimal control synthesis algorithm. The deleterious effect of oil‐column resonance common to shaking tables is examined and reduced through the use of filters. The controlled response of the experimental specimen is compared for the two control strategies. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
基于Hv方法的三轴液压振动系统频响函数估计的研究   总被引:3,自引:0,他引:3  
三轴液压振动系统是实验室内模拟振动环境的主要设备,其主要功能是精确地复现给定的功率谱和时间历程。振动控制技术是实现这一目标的关键技术,它以频响函数估计为基础。频响函数估计的精度影响控制过程的快速性和稳定性。本文对几种典型的频响函数估计方法进行了分析,针对传统方法精度低且受到矩阵病态条件约束等缺点,应用特征分析与摄动理论构造了一种多入多出的Hv方法,并且应用三轴液压振动系统的实测数据对其进行了检验。结果表明该方法是适用的。  相似文献   

10.
The time delay resulting from the servo hydraulic systems can potentially destabilize the real‐time dynamic hybrid testing (RTDHT) systems. In this paper, the discrete‐time root locus technique is adopted to investigate the delay‐dependent stability performance of MDOF RTDHT systems. Stability analysis of an idealized two‐story shear frame with two DOFs is first performed to illustrate the proposed method. The delay‐dependent stability condition is presented for various structural properties, time delay, and integration time steps. Effects of delay compensation methods on stability are also investigated. Then, the proposed method is applied to analyze the delay‐dependent stability of a single shaking table RTDHT system with an 18‐DOF finite element numerical substructure, and corresponding RTDHTs are carried out to verify the theoretical results. Furthermore, the stability behavior of a finite element RTDHT system with two physical substructures, loaded by twin shaking tables, is theoretically and experimentally investigated. All experimental results convincingly demonstrate that the delay‐dependent stability analysis on the basis of the discrete‐time root locus technique is feasible. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
地铁车站结构大型振动台试验与数值模拟的比较研究   总被引:4,自引:1,他引:3  
根据可液化土层上土-地铁车站结构动力相互作用大型振动台模型试验结果,以软件ABAQUS为平台,将地基土-地铁车站结构体系视为平面应变问题,采用记忆型嵌套面黏塑性动力本构模型模拟土体的动力特性,采用混凝土动塑性损伤模型模拟车站结构混凝土的动力特性,建立了土-地铁车站结构非线性动力相互作用的有限元分析模型,对各种试验工况下地基土-地铁车站结构体系的地震反应进行了数值模拟,并与试验结果进行了对比,结果表明:数值模拟与振动台模型试验结果基本一致,体现出了相似的规律性,相互印证了计算分析的力学建模和振动台试验结果的正确性。  相似文献   

12.
This paper describes shaking table tests of a multi-storey scale-model building structure subjected to seismic excitation and controlled by a semi-active fluid damper control system. The semi-active dampers were installed in the lateral bracing of the structure and the mechanical properties of the dampers were modified according to control algorithms which utilized the measured response of the structure. A simplified time-delay compensation method was developed to account for delays within the control system. The results of the shaking table tests are presented and interpreted and analytical predictions are shown to compare reasonably well with the experimental results. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
对土石坝振动台模型试验理论和技术进行系统阐述,提出基于原型和模型坝料静、动力特性试验的模型相似设计方法和不同强度地震动递进输入(白噪声微振-设计地震-校核地震-破坏试验)的振动试验方法。基于1g大型振动台和ng超重力离心机振动台设备性能现状,结合高土石坝的结构特点和动力试验相似模拟要求,对土石坝振动台模型试验的优势及局限进行深入讨论。结合已有的工程实践,对土石坝振动台模型试验在工程中的应用进行总结,并以某实际高面板堆石坝为例研究面板坝生命周期内经历多次地震情况下结构动力特性的演化规律。  相似文献   

14.
土工结构振动台模型试验除了需采集常规的加速度、位移、应变信号外,还需采集模型场地土中振动孔隙水压力、动土压力等信号,由于同步采集的动态信号的多样性和复杂性,一般的振动台信号采集系统难以满足这样的多种动态信号同步采集要求。基于传感器融合技术和虚拟仪器技术,研发了一套适用于多种类型信号输入的动态信号同步采集系统,可实现80通道动态信号、18通道数字信号的同步采集、回放和频谱分析等功能,并具有界面友好、使用维护方便等特点。  相似文献   

15.
Results from real‐time dynamic substructuring (RTDS) tests are compared with results from shake table tests performed on a two‐storey steel building structure model. At each storey, the structural system consists of a cantilevered steel column resisting lateral loads in bending. In two tests, a slender diagonal tension‐only steel bracing member was added at the first floor to obtain an unsymmetrical system with highly variable stiffness. Only the first‐storey structural components were included in the RTDS test program and a Rosenbrock‐W linearly implicit integration scheme was adopted for the numerical solution. The tests were performed under seismic ground motions exhibiting various amplitude levels and frequency contents to develop first and second mode‐dominated responses as well as elastic and inelastic responses. A chirp signal was also used. Coherent results were obtained between the shake table and the RTDS testing techniques, indicating that RTDS testing methods can be used to successfully reproduce both the linear and nonlinear seismic responses of ductile structural steel seismic force resisting systems. The time delay introduced by actuator‐control systems was also studied and a novel adaptive compensation scheme is proposed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
Experimental techniques for testing dynamically substructured systems are currently receiving attention in a wide range of structural, aerospace and automotive engineering environments. Dynamic substructuring enables full‐size, critical components to be physically tested within a laboratory (as physical substructures), while the remaining parts are simulated in real‐time (as numerical substructures). High quality control is required to achieve synchronization of variables at the substructuring interfaces and to compensate for additional actuator system(s) dynamics, nonlinearities, uncertainties and time‐varying parameters within the physical substructures. This paper presents the substructuring approach and associated controller designs for performance testing of an aseismic, base‐isolation system, which is comprised of roller‐pendulum isolators and controllable, nonlinear magnetorheological dampers. Roller‐pendulum isolators are typically mounted between the protected structure and its foundation and have a fundamental period of oscillation far‐removed from the predominant periods of any earthquake. Such semi‐active damper systems can ensure safety and performance requirements, whereas the implementation of purely active systems can be problematic in this respect. A linear inverse dynamics compensation and an adaptive controller are tailored for the resulting nonlinear synchronization problem. Implementation results favourably compare the effectiveness of the adaptive substructuring method against a conventional shaking‐table technique. A 1.32% error resulted compared with the shaking‐table response. Ultimately, the accuracy of the substructuring method compared with the response of the shaking‐table is dependent upon the fidelity of the numerical substructure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents results of experimental and numerical investigations of a seesaw energy dissipation system (SEDS) using fluid viscous dampers (FVDs). To confirm the characteristics of the FVDs used in the tests, harmonic dynamic loading tests were conducted in advance of the free vibration tests and the shaking table tests. Shaking table tests were conducted to demonstrate the damping capacity of the SEDS under random excitations such as seismic waves, and the results showed SEDSs have sufficient damping capacity for reducing the seismic response of frames. Free vibration tests were conducted to confirm the reliability of simplified analysis. Time history response analyses were also conducted and the results are in close agreement with shaking table test results.  相似文献   

18.
An analytical model is developed to evaluate performance characteristics of unidirectional seismic simulators (shaking tables). The validity of the model is verified with experimental measurements of the frequency response of the shaking table at the Catholic University of Peru. Interaction effects between shaking table and structure are first studied by analysing the response of a two DOF (degree of freedom) oscillator with mechanical properties representative of the actuator-table-structure system. A single DOF viscoelastic oscillator representing the structural test specimen is then included in the analytical model of the seismic simulator, and the behaviour of the combined system is evaluated, in the frequency domain, in terms of response stability and accuracy of reproduction of the command signal. Numerical simulations of system response under different load conditions are subsequently performed in order to study the influence of shaking table and test structure characteristics on the interaction phenomenon. The results obtained explain some of the performance degradation observed in seismic simulation tests involving very heavy structures and provide guidelines for the design of more reliable shaking table systems.  相似文献   

19.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Reponses of structures subjected to severe earthquakes sometimes significantly surpass what was considered in the design. It is important to investigate the failure mechanism and collapse margin of structures beyond design, especially for high-rise buildings. In this study, steel high-rise buildings using either square concrete-filled-tube (CFT) columns or steel tube columns are designed. A detailed three-dimensional (3D) structural model is developed to analyze the seismic behavior of a steel high-rise towards a complete collapse. The effectiveness is verified by both component tests and a full-scale shaking table test. The collapse margin, which is defined as the ratio of PGA between the collapse level to the design major earthquake level (Level 2), is quantified by a series of numerical simulations using incremental dynamic analyses (IDA). The baseline building using CFT columns collapsed with a weak first story mechanism and presented a collapse margin ranging from 10 to 20. The significant variation in the collapse margin was caused by the different characteristics of the input ground motions. The building using equivalent steel columns collapsed earlier due to the significant shortening of the locally buckled columns, exhibiting only 57% of the collapse margin of the baseline building. The influence of reducing the height of the first story was quite significant. The shortened first story not only enlarged the collapse margin by 20%, but also changed the collapse mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号