首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the potential of using chironomid assemblages to estimate past temperature changes by comparing chironomid-inferred temperatures to meteorological data for the last 87 years. This comparison is made using high-resolution (i.e., sub-decadally resolved) short cores of four lakes along a gradient of altitude (Lake Njulla, 999 m a.s.l., Lake 850, 850 m a.s.l., Lake Alanen Laanijavri, 365 m a.s.l. and Lake Vuoskkujavri, 348 m a.s.l.), vegetation (pine forest to alpine tundra vegetation) and temperature (mean July temperature of 12.4 to 8.1°C). Patterns of chironomid-inferred changes in mean July air temperature were highly comparable to changes in the meteorological data. Moreover, instrumental data were almost always within the specific errors of the quantitative estimates using chironomids. These results indicate that chironomids can be used as a powerful tool to reconstruct temperatures and that chironomids are sensitive enough to record temperature changes of low magnitude such as those recorded during the Holocene. Although this relationship between temperature and chironomid community is strong for the last 87 years, we cannot assume that other environmental factors such as organic matter, changes of lake water depth or oxygen availability were not more significant over longer temporal scales of the Holocene, or longer.  相似文献   

2.
Reliable estimates of Holocene temperatures are important for understanding past climate dynamics, the response of biota to climate change, and validating climate models. Chironomids in lake sediment cores are used widely to quantify past summer temperatures, for which high-latitude and/or high-altitude lakes, remote from human influence, are usually considered appropriate. Temperature inferences from lowland lakes are likely influenced by other variables, specifically eutrophication and industrial pollution, but their reliability has never been tested. We used a Norwegian chironomid-based transfer function (r 2 = 0.91; RMSEP = 1.01 °C) to infer mean July air temperature over the last 200 years, using chironomid assemblages in a core collected from a polluted, nutrient-enriched lake at Speke Hall, Liverpool, England. The chironomid-inferred temperatures correlate significantly with the local instrumental temperature record and follow long-term national temperature trends. These results show that chironomids can be used to produce reliable estimates of past mean July air temperature, even when other variables have also influenced the composition of the chironomid community. These findings underline the value of chironomids as sensitive and reliable quantitative proxies for summer temperature.  相似文献   

3.
We analyzed subfossil chironomids, sediment organic matter and sediment particle size data from a 1.11-m-long freeze core collected from Carleton Lake (unofficial name), located approximately 120 km north of the modern treeline. This well-dated core spans the last ca. 6,500 years. Two chironomid transfer functions were applied to infer mean July air temperatures. Our results indicated that the chironomid-inferred temperatures from this lake sediment record did not pass a significance test, suggesting that other factors in addition to temperature may have been important in structuring the chironomid community through time. Although not statistically significant, the chironomid-inferred temperatures from this site do follow a familiar pattern, with highest inferred temperatures occurring during the Holocene Thermal Maximum (~6–4 cal kyr BP), followed by a long-term cooling trend, which is reversed during the last 600 years. The largest change in the chironomid assemblage, which occurred between ca. 4,600 and 3,900 cal yr BP is possibly related to the well-documented northward advance and subsequent retreat of treeline in this region.  相似文献   

4.
We present results from multiple stable isotope analyses (δ18O of chironomid larval head capsules, chironomid adult thoraxes and other insect remains and δD, δ13C, δ15N of total organic matter—TOM) of a lake sediment core (04-SVID-03) taken from Stora Vidarvatn in northeastern Iceland to reconstruct past environmental, limnological and δ18O of past lake water changes during the Holocene. Core 04-SVID-03 represents a ∼12,000 cal. yrs BP to present record. Large magnitude changes in δ18O occurred during the Holocene at the site. Downcore shifts in δ18O of chironomids did not correlate with measurements of the δ13C and δ15N of chironomid head capsules, implying that the δ18O changes were not primarily driven by changes in chironomid diet during the Holocene. The δD of TOM provided a proxy of relative lake-water δD changes at the site and also showed large magnitude changes during the record. This approach was supported by analyses of a modern training set where δDTOM analyses were conducted using surface sediments from a suite of freshwater lakes over a large latitudinal gradient. The magnitude of changes in both the δ18O and δD and the relatively negative δ18O values throughout much of the core suggest that the proxies represent more paleoenvironmental information than solely temperature. Additional possible influences on lake-water isotopic composition are discussed, including changes in the seasonality of precipitation, in the patterns of air masses supplying precipitation to Iceland and in the dominant mode of the North Atlantic Oscillation.  相似文献   

5.
Multivariate numerical analyses (DCA, CCA) were used to study the distribution of chironomids from surface sediments of 100 lakes spanning broad ecoclimatic conditions in northern Swedish Lapland. The study sites range from boreal forest to alpine tundra and are located in a region of relatively low human impact. Of the 19 environmental variables measured, ordination by CCA identified mean July air temperature as one of the most significant variables explaining the distribution and the abundance of chironomids. Lossonignition (LOI), maximum lake depth and mean January air temperature also accounted for significant variation in chironomid assemblages. A quantitative transfer function was created to estimate mean July air temperature from sedimentary chironomid assemblages using weightedaveraging partial least squares regression (WAPLS). The coefficient of determination was relatively high (r2 = 0.65) with root mean squared error of prediction (RMSEP, based on jack-knifing) of 1.13 °C and maximum bias of 2.1 °C, indicating that chironomids can provide useful quantitative estimates of past changes in mean July air temperature. The paper focuses mainly on the relationship between chironomid composition and July air temperature, but the relationship to LOI and depth are also discussed.  相似文献   

6.
Arctic aquatic systems are considered to be especially sensitive to anthropogenic disturbance, which can have cascading effects on biological communities as aquatic food-web structure is altered. Bio-indicators that respond to major limnological changes can be used to detect and infer major environmental change, such as climate warming, with the use of paleolimnological techniques. A multi-proxy approach was used to quantify recent environmental changes at Baker Lake, Nunavut, Arctic Canada. Analyses of fossilized remains of chironomids and diatoms were conducted on a sediment core of 20 cm in length sampled at 0.5-cm intervals. A new surface sediment training set of subfossil chironomid assemblages from 65 lakes across the eastern Canadian Arctic generated a robust (r jack2 = 0.79) surface water paleotemperature transfer function. The transfer function was applied to stratigraphic intervals from the Baker Lake sediment core to generate a paleotemperature reconstruction of sub-decadal resolution. The surface water temperature reconstruction inferred a 2°C increase in mid-summer surface water temperature for Baker Lake over the last 60 years, which was corroborated by the local instrumental record spanning the period of 1950–2007 AD. The chironomid record shows a recent decline of several cold-water taxa and appearance of warm-water indicators. This shift in community structure began circa 1906 AD, and intensified after 1940 AD. The corresponding fossil diatom record showed an increase in small planktonic Cyclotella taxa over the past 60 years, intensifying in the last 5 years, which also suggests a warmer climate and longer ice-free periods. The shifts in the diatom assemblages began later than the shifts in the chironomid assemblages, and were of lower magnitude, reflecting differences in the mechanisms in which these two indicators respond to environmental change.  相似文献   

7.
Ireland provides a unique setting for the study of past climates, as its climate is dominated by westerly airflow from the North Atlantic and readily responsive to changes in North Atlantic circulation patterns. Although there has been substantial research on Ireland’s past environments, quantitative palaeolimnological research, especially chironomid-based research, has been lacking. In order to further develop chironomid-based palaeolimnological investigations, a calibration set was constructed to determine the dominant environmental controls on modern chironomids in western Ireland. Chironomid subfossils were collected from surface sediments of 50 lakes. The lakes were characterised with 36 environmental variables, including physical attributes, lake water characteristics, lake sediment characteristics and land cover within each catchment. In this exploratory study, no specific environmental variable was targeted and lakes were chosen to span gradients of latitude, elevation, depth and trophic status. Redundancy analysis showed that six environmental variables—mean July air temperature, lake depth, dissolved organic carbon, and percentage catchment land cover of agriculture, peat bog and scrubland—captured a large and statistically significant portion of the variance in the chironomid data. July temperature and agricultural land cover were the most dominant environmental variables, with July temperature proving the most suitable for inference model development. A classical weighted-averaging model was developed to estimate July air temperature, with a coefficient of determination (r jack 2 ) of 0.60 and root mean square error of prediction (RMSEP) of 0.57 °C. Results suggest that summer temperature is the dominant influence on chironomid distribution across a wide variety of lake types, and the relatively small RMSEP should allow for more accurate reconstructions of Ireland’s relatively subdued Holocene temperature fluctuations.  相似文献   

8.
A temperature reconstruction using chironomids was attempted at Egelsee, Switzerland, a site where pollen and macrofossil records showed a correspondence between vegetation and climatic changes inferred by other proxies in Europe. The general pattern of temperature changes inferred from chironomids during the Late Glacial [i.e. cold temperatures between ca. 16,500 and 14,800 cal BP, close to present-day temperature between 15,000 and 13,000 cal BP and colder temperatures during the Younger Dryas (YD)], and the major temperature changes of the Holocene (i.e. the Younger Dryas–Holocene transition and the Late Holocene cooling trend) at Egelsee, were mirrored in other European climate reconstructions using various proxies. However, the amplitude of temperature changes during the YD was smaller than reconstructed by other proxies at various sites, and the 8,200 years BP event was not apparent. These differences between records were probably due to the dominance of Corynocera ambigua, with percentages reaching 60% in parts of the Egelsee sequence. This taxon was not present in any of the 103 lakes used for the transfer function and its absence may have yielded less accurate inferences. Its presence in samples only associated with cold inferences at Egelsee suggests that this taxon is a cold indicator. However, it was also found in warm Danish lakes and the factors that determine the presence of C. ambigua remain unexplained. Most samples had a poor fit to temperature and instead, dissolved organic carbon seemed to be a factor influencing the chironomid assemblages during the Holocene. These results illustrate the need to better understand the ecology of chironomids and to disentangle the various factors that affect chironomid communities through time. Ultimately, such information will lead to more accurate temperature reconstructions.  相似文献   

9.
Surface lake sediment was recovered from 57 lakes along an elevation gradient in the central, eastern Sierra Nevada of California. The surface sediment was analysed for subfossil chironomid remains in order to assess the modern distribution of chironomids in the region. The lakes sampled for the calibration dataset were between 2.0 and 40.0 m in depth, spanned an altitudinal gradient of 1360 m and a surface water temperature gradient of approximately 14 °C. Redundancy analysis (RDA) identified that five of the measured environmental variables – surface water temperature, elevation, depth, strontium, particulate organic carbon – accounted for a statistically significant amount of the variance in chironomid community composition. Quantitative transfer functions, based on weighted-averaging (WA), partial least squares (PLS) and weighted-averaging partial least squares (WA-PLS), were developed to estimate surface water temperature from the chironomid assemblages. The best model was a WA model with classical deshrinking, which had a relatively high coefficient of determination (r2 = 0.73), low root mean square error of prediction (RMSEP = 1.2 °C) and a low maximum bias (0.90 °C). The results from this study suggest that robust quantitative estimates of past surface water temperature can be derived from the application of these models to fossil chironomid assemblages preserved in late-Quaternary lake sediment in this region.  相似文献   

10.
An 8000-year record of palaeoproductivity, based on the chemical and chironomid stratigraphies from Lake Päijänne, S. Finland, was assessed with respect to known morphometric, climatic and anthropogenic events. A gradual trend of dystrophication and an associated decrease in aquatic production was detected during the Holocene, with the following exceptions: (1) high diatom and chironomid production around 8000-6000 cal yr BP, (2) eutrophication around 2000 cal yr BP, and (3) an anthropogenic signal during the last few decades.The changes in chironomid assemblages, before the past few decades, have mainly been shifts in concentration, but not in species composition. Variation in chironomid production was mainly explained by the accumulations of biogenic silicon, carbon and organic matter. Nutrient availability seems to be important in controlling biogenic silicon, which we use to infer past diatom production. The high production ca. 8000-6000 cal yr BP and the fluctuation in chironomid influx after ca. 2000 cal yr BP, however, were probably caused by the proposed warm/dry and cold/wet conditions during these times, respectively. These results highlight the sensitivity of boreal shield lake ecosystems to climatic forcing. In contrast, the pronounced change in the morphometry of the basin around 7000 cal yr BP had little effect on the trophic state of the lake. The human-induced trophic change during the past few decades has affected the Lake Päijänne ecosystem to an extent never experienced before during the last 8000-years.  相似文献   

11.
We analysed a 620-cm-long sediment record from Lake Kotokel located in East Siberia (Russia) for subfossil diatoms, chironomids and pollen to provide a reconstruction of the climate history of the area for the last 12.2 kyr. The subfossil records show differing time lags in their responses to climate change; diatoms and chironomids were more sensitive to climate change than the pollen record. Changes in the biogenic proxies seem related with changes in insolation, the temperature of the North Atlantic and solar activity. The chironomids Chironomus plumosus-type and Einfeldia carbonaria-type and the diatom Aulacoseira granulata were interpreted as markers of warm climate condition. The proxy records were divided into four periods (A, B, C and D) suggesting differing climate in East Siberia during the Holocene. Period D (12.2–9.5 kyr BP) at the beginning of the Holocene, according to chironomid and diatom records, was characterized by warm climate with summer temperatures close to modern. However, forest vegetation had not become fully established yet. During Period C (9.5–5.8 kyr BP), the climate seemed to gradually become colder and wetter from the beginning of Period C to 7 kyr BP. From 7 to 5.8 kyr BP, the climate seemed to remain cold, but aridity increased. Period B (5.8–1.7 kyr BP) was characterised by frequent and sharp alternations between warm and cold conditions. Unstable conditions during this time are also registered in records from Lakes Baikal, Khubsugul and various other shallow lakes of the region. Optimal warm and wet conditions seemed to occur ca. 4 kyr BP. During Period A (the last 1.5 kyr) the diatom and chironomid records show evidence of cold conditions at 1.5–1 kyr BP, but the forest vegetation did not change significantly.  相似文献   

12.
This study used palaeolimnological approaches to determine how Holocene climatic and environmental changes affected aquatic assemblages in a subarctic lake. Sediments of the small Lake Njargajavri, in northern Finnish Lapland above the present treeline, were studied using multi-proxy methods. The palaeolimnological development of the lake was assessed by analyses of chironomids, Cladocera and diatoms. The lake was formed in the early Holocene and was characterized by prominent erosion and leaching from poorly developed soils before the establishment of birch forests, resulting in a high pH and trophic state. The lake level started to lower as early as ca. 10,200 cal. BP. In the resulting shallow basin, rich in aquatic mosses, pH decreased and a diverse cladoceran and chironomid assemblage developed. It is likely that there was a slight rise in the water level ca. 8000 cal. BP. Later, during the mid-Holocene characterized by low effective moisture detected elsewhere in Fennoscandia, the lake probably completely dried out; this is manifest as a hiatus in the stratigraphy. The sediment record continues from ca. 5000 cal. BP onwards as the lake formed again due to increased effective moisture. The new lake was characterized by very low pH. The possible spread of pine to the catchment and the development of heath community may have contributed to the unusually steep (for northern Fennoscandia) decline in pH via change in soils, together with the natural decrease in leaching of base cations. Furthermore, the change in pH may have been driven by cooling climate, affecting the balance of dissolved inorganic carbon in the lake.  相似文献   

13.
The Arctic has a disproportionately large response to changes in radiative forcing of climate, and arctic lacustrine ecosystems respond sensitively to these changes. The goal of this research is to generate high-resolution climate records for the past two millennia using multiple proxies in order to place 20th and 21st century climate and environmental change into a long-term context. We use a 14C- and 210Pb-dated surface core from Lake CF8 on northeastern Baffin Island, Arctic Canada to generate a high-resolution multiproxy reconstruction of climate and environmental change. Throughout the late Holocene, primary productivity in Lake CF8 was low, but increased almost 20-fold in the past 200 years. Insect (Chironomidae) assemblages also show dramatic changes since 1950 AD, with cold stenothermous chironomid taxa disappearing from the record altogether. These changes in productivity and chironomid assemblages are unprecedented in the past 5,000 years. The dramatic ecological shifts that occurred at Lake CF8 have also been observed elsewhere in the Arctic, and will likely continue at ever-increasing rates as anthropogenic inputs of green house gases continue to cause climate warming and enhanced lacustrine primary production.  相似文献   

14.
Subfossil chironomid analysis was applied to a sediment core from Sägistalsee, a small lake at present-day tree-line elevation in the Swiss Alps. During the whole 9000-year stratigraphy the chironomid fauna was dominated by taxa typical of alpine lakes. Major faunistic trends were caused by changes in accumulation rates of three taxa, namely Procladius, Stictochironomus, and Tanytarsus lugens-type. In the early Holocene Procladius was the dominant taxon. In younger samples, Stictochironomus tended to have as high or higher abundances and both taxa showed an increase in accumulation rates. A possible cause of this succession is the decrease of lake-water depth due to infilling of the lake basin and changes in associated limnological parameters. The immigration of Picea (spruce) at ca. 6500 cal. 14C yrs BP and the resulting denser woodlands in the lake's catchment may have promoted this trend. During three phases, from ca. 70–1450, 1900–2350, and 3500–3950 cal. BP, remains of Procladius, Stictochironomus, and Tanytarsus lugens-type are absent from the lake sediment, whereas other typical lake taxa and stream chironomids show no change in accumulation rate. Together with sediment chemistry data, this suggests that increased oxygen deficits in the lake's bottom water during these intervals caused the elimination of chironomids living in the deepest part of the lake. All three periods coincide with increased human activity in the catchment, as deduced from palaeobotanical evidence. Therefore, enhanced nutrient loading of the lake due to the presence of humans and their livestock in the catchment is the most likely cause of the increased anoxia. The chironomid fauna reacted the same way to intensive pasturing during the last ca. 1500 years as to Bronze Age clear-cutting and more moderate pasturing during the Bronze, Iron, and Roman Ages, suggesting that alpine lake ecosystems can be extremely sensitive to human activity in the catchment. On the other hand, the chironomid assemblages show a considerable amount of resilience to human disturbance, as the chironomid fauna reverted to the pre-impact stage after the first two periods of human activity. In recent years, even though pasturing decreased again, the chironomid fauna has only partly recovered. This is possibly due to other human-induced changes in the lake ecosystem, e.g., the stocking of the lake with fish. The chironomid stratigraphy is difficult to interpret climatologically as the strongest changes in chironomid-inferred temperatures coincide with periods of intensive human activity in the catchment.  相似文献   

15.
A multi-proxy paleoenvironmental study from Lake WB02 (72.29°N, 109.87°W) on Northern Victoria Island, Nunavut, Canada provides an 8.4-ka record of chironomid and ecosystem production. Mean July air temperatures for this region during the Holocene were inferred from the fossil record. The chironomid assemblages contained 33 taxa and were dominated by Paracladius and Heterotrissocladius maeaeri-type. Primary production and chironomid food availability inferred from sediment biogenic silica and loss on ignition at 550°C, and chironomid concentrations, all exhibited synchronous patterns of change through time. Similar to other climate records from across the Arctic, the sediment and fossil data from Lake WB02 support the hypothesis of a warm and productive early to middle Holocene, a cool and generally unproductive middle to late Holocene and a return to a warmer, more productive environment in the past 100 years. Mean July air temperature reconstructions based on both the modern analogue technique (MAT) and weighted averaging partial least squares regression (WAPLS), however, failed to reflect these same changes. The difference between the qualitative and quantitative environmental reconstructions may be due to the restrictions associated with the use of these inference tools, the effects of which are more significant in unproductive ecosystems such as Arctic lakes.  相似文献   

16.
Fossil midge remains in a sediment core from Lake Stowell, a low-elevation lake in coastal British Columbia, Canada, were used to assess temporal changes in chironomid communities and to produce quantitative estimates of mean July air temperature (MJAT) for the past 14,000 years based on two different transfer functions. Chironomid assemblages are diverse throughout much of the record, with most taxa present at low relative abundances. The basal portion of the sediment record is characterized by low head capsule concentrations, taxonomic diversity and organic matter content, all of which increase towards the early Holocene. Inferred temperatures suggest a cool late-glacial interval with a minimum MJAT of 12.5 °C, ~2 °C cooler than the inferred modern temperature. Summer temperatures gradually increased from this minimum until a brief cooling of as much as ~3 °C relative to modern that coincides with the Younger Dryas chronozone. An interval of warmer summers with MJAT of ~16 to 18 °C (2–3 °C warmer than modern) is inferred between ~10,500 and 8000 cal year BP. This early Holocene warm period was followed by generally cooler inferred temperatures in the middle and late Holocene. The midge-inferred temperature record from Lake Stowell is generally consistent with other temperature reconstructions from the region based on chironomid remains and other climate proxies. This research underscores the potential of low-elevation, mid-latitude sites for chironomid-based temperature reconstructions. In order to maximize the availability of modern analogues for robust temperature reconstructions from similar sites, calibration datasets should be expanded to include more sites from the warm end of the temperature gradient.  相似文献   

17.
We assess Holocene environmental change at alpine Lake Njulla(68°22N, 18°42E, 999 m a.s.l.) innorthernmost Sweden using sedimentary remains of chironomid head capsules anddiatoms. We apply regional calibration sets to quantitatively reconstruct meanJuly air temperature (using chironomids and diatoms) and lake-water pH(using diatoms). Both chironomids and diatoms infer highest temperatures(1.7–2.3°C above present-day estimates, includinga correction for glacio-isostatic land up-lift by0.6°C) during the early Holocene (c.9,500–8,500 cal. yrs BP). Diatoms suggest a decreasing lake-waterpH trend (c. 0.6 pH units) since the early Holocene. Usingdetrended canonical correspondence analysis (DCCA), we compare the Holocenedevelopment of diatom communities in Lake Njulla with four other nearby lakes(Lake 850, Lake Tibetanus, Vuoskkujávri, Vuolep Njakajaure) locatedalong an altitudinal gradient. All five lakes show similar initial DCCA scoresafter deglaciation, suggesting that similar environmental processes such ashigh erosion rates and low light availability associated with high summertemperature appear to have regulated the diatom community, favouring highabundances of Fragilaria species. Subsequently, the diatomassemblages develop in a directional manner, but timing and scale ofdevelopment differ substantially between lakes. This is attributed primarily todifferences in the local geology, which is controlling the lake-waterpH. Imposed on the basic geological setting, site-specific processessuch as vegetation development, climate, hydrological setting andin-lake processes appear to control lake development in northernSweden.  相似文献   

18.
A sedimentary record from lake Stora Viearvatn in northeast Iceland records environmental changes over the past 2000 years. Downcore data include chironomid (Diptera: Chironomidae) assemblage data and total organic carbon, nitrogen, and biogenic silica content. Sample scores from detrended correspondence analysis (DCA) of chironomid assemblage data are well correlated with measured temperatures at Stykkishólmur over the 170 year instrumental record, indicating that chironomid assemblages at Stora Viearvatn have responded sensitively to past temperature changes. DCA scores appear to be useful for quantitatively inferring past temperatures at this site. In contrast, a quantitative chironomid-temperature transfer function developed for northwestern Iceland does a relatively poor job of reconstructing temperature shifts, possibly due to the lake’s large size and depth relative to the calibration sites or to the limited resolution of the subfossil taxonomy. The pre-instrumental climate history inferred from chironomids and other paleolimnological proxies is supported by prior inferences from historical documents, glacier reconstructions, and paleoceanographic studies. Much of the first millennium AD was relatively warm, with temperatures comparable to warm decades of the twentieth century. Temperatures during parts of the tenth and eleventh centuries AD may have been comparably warm. Biogenic silica concentrations declined, carbon:nitrogen ratios increased, and some chironomid taxa disappeared from the lake between the thirteenth and nineteenth centuries, recording the decline of temperatures into the Little Ice Age, increasing soil erosion, and declining lake productivity. All the proxy reconstructions indicate that the most severe Little Ice Age conditions occurred during the eighteenth and nineteenth centuries, a period historically associated with maximum sea-ice and glacier extent around Iceland.
Peter G. LangdonEmail:
  相似文献   

19.
Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000?year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000?years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000?cal?year BP sediments have ??13C values that range from ~?39 to ?31??, suggesting peak methane carbon assimilation at that time. These low ??13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500?cal?year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640?cal?year BP, and fossil chironomids from 1,500?cal?year BP in the core illustrate that ??old?? carbon has also contributed to the development of the aquatic ecosystem since ~1,500?cal?year BP. The relatively low ??13C values of aquatic invertebrates (as low as ?40.5??) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.  相似文献   

20.
The Holocene environmental history and climate are reconstructed for Råtåsjøen, a low-alpine lake in south-central Norway. The reconstructions are based on chironomids, diatoms, pollen, plant macrofossils, and sediment characteristics. From plant macrofossil evidence, birch trees (Betula pubescens) immigrated ca. 10,000 cal BP. The chironomid-inferred mean July air temperature was high, but may be unreliable during the early stages of the lakes history due to the high abundance of Chironomus anthracinus type, a taxon that may include several species. From ca. 9000 cal BP the inferred mean July temperature was lower (ca. 9 °C). Temperatures increased towards 8000 cal BP and pine (Pinus sylvestris) reached its upper limit near the lake. July temperature may have become a significant factor controlling long-term pH in the lake, starting shortly after 8000 cal BP. High pH values were associated with periods of warm summers and lower pH values occurred during periods of colder summers. Alkalinity processes within the lake and/or the catchment are possible factors controlling this relationship. A temperature decline at ca. 5400 cal BP separated two 10.6 °C temperature maxima around 6400 and 4500 cal BP. The 1.5 °C decline in July air temperatures from ca. 4400 cal BP was paralleled by a decrease of pH from 7.2 to 6.8. Following the temperature drop, first pine and then birch trees declined and disappeared from the catchment and organic accumulation in the lake increased. The increased organic accumulation rate had a positive effect on diatom production. At ca. 2700 cal BP the temperature reached a minimum (ca. 9.2 °C) and correspondingly a second pH minimum was reached. Temperature decreased again slightly at ca. 400 cal BP during the Little Ice Age, before increasing by about 0.5 °C towards the present. Percentage organic carbon as estimated by loss-on-ignition appears to be better correlated with chironomid-inferred July temperatures than organic accumulation rates, at least for the last 9000 years. Accumulation rates of organic sediments are more coupled with catchment-related processes, such as erosion and major changes in vegetation, than is percentage organic carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号