首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The study proposes a model by which a thick succession of volcanic tuffs can be zeolitized by alteration of pyroclastic material in the presence of sufficient eruptive water and at temperatures close to water vapour condensation. In the case of phreatomagmatic products, the model simplifies interpretation of problematic deposits that exhibit pronounced vertical and lateral variation in lithification grade. A major feature of the model is that thick zeolitized tuffs can be formed during emplacement of pyroclastic products, in marked contrast to later alteration in an open hydrologic system. Geological, volcanological and mineralogical data for the Neapolitan Yellow Tuff, a widespread trachytic pyroclastic deposit outcropping around Campi Flegrei (Southern Italy), have been used to infer the physico-chemical conditions that determined mineral genesis. This tuff shows a reduction in lithification grade towards the base, top and with distance from the vent and very variable zeolitization within the lithified portion. We suggest that during initial emplacement the erupted products chilled against the ground, inhibiting zeolite crystallization. During rapid deposition of the thick, wet succession thermal insulation allowed the persistence of elevated temperatures for a time sufficient for enhancement of hydration-dissolution processes in the volcanic glass. The highly reactive alkali-trachytic glass quickly buffered the acid pH of the system, favouring phillipsite crystallization followed by chabazite nucleation. The variable zeolite content reflects fluctuating emplacement conditions (e.g. changes in water content and temperature). Cooling of the upper and relatively thin distal deposits inhibited the zeolitization process, thereby preserving the primary unlithified deposit. Received: 25 May 1999 / Accepted: 28 October 1999  相似文献   

2.
The present study reports the results of research on volcaniclastic products from Logudoro (northern Sardinia), a reconstructed stratigraphic succession some hundreds of meters thick, comprising two different ignimbritic units separated by an epiclastic layer (generally ˜10 m thick). Clinoptilolite is the most widely distributed authigenic phase in epiclastite and unwelded units, always associated with opal-CT and sometimes with smectite. An adularia-like feldspar, cristobalite and epigenetic quartz are typical phases of welded units. Within the zeolitized units (unwelded ignimbrite and epiclastic units) clinoptilolite and opal-CT constitute the cement deriving from the transformation of the precursor rhyolitic glass, in agreement with a single zeolitization process that developed after the deposition of the entire succession. Silica increases in zeolitized rocks with respect to the precursor material, leading to hypothesize that the secondary mineralization process was favored by mineralized hydrothermal fluids preferentially circulating through the fault system of the area. Quartz veins in welded subunit and K-feldspar (adularia-like) preferentially located near the faults are in agreement with this hypothesis. The interaction of these fluids with the glassy fraction favored its dissolution and the consequent crystallization of clinoptilolite. Furthermore, the pH increase and the silica supersaturation enhanced the contemporary or subsequent precipitation of opal-CT. Received: 5 June 2000 / Accepted: 14 August 2000  相似文献   

3.
The Kodzko Metamorphic Complex (KMC) in the Central Sudetes consists of meta-sedimentary and meta-igneous rocks metamorphosed under greenschist to amphibolite facies conditions. They are comprised in a number of separate tectonic units interpreted as thrust sheets. In contrast to other Lower Palaeozoic volcano-sedimentary successions in the Sudetes, the two uppermost units (the Orla-Googowy unit and the Kodzko Fortress unit) of the KMC contain meta-igneous rocks with supra-subduction zone affinities. The age of the KMC was previously assumed to be Early Palaeozoic–Devonian, based on biostratigraphic findings in the lowermost tectonic unit. Our geochronological study focused on the magmatic rocks from the two uppermost tectonic units, exposed in the SW part of the KMC. Two orthogneiss samples from the Orla-Googowy unit yielded ages of 500.4±3.1 and 500.2±4.9 Ma, interpreted to indicate the crystallization age of the granitic precursors. A plagioclase gneiss from the same tectonic unit, intimately interlayered with metagabbro, provided an upper intercept age of 590.1±7.2 Ma, which is interpreted as the time of igneous crystallization. From the topmost Kodzko Fortress unit, a metatuffite was studied, which contains a mixture of genetically different zircon grains. The youngest 207Pb/206Pb ages, which cluster at ca. 590-600 Ma, are interpreted to indicate the maximum depositional age for this metasediment. The results of this study are in accord with a model that suggests a nappe structure for the KMC, with a Middle Devonian succession at the base and Upper Proterozoic units at structurally higher levels. It is suggested here that the KMC represents a composite tectonic suture that juxtaposes elements of pre-Variscan basement, intruded by the Lower Ordovician granite, against a Middle Palaeozoic passive margin succession. The new ages, combined with the overall geochemical variation in the KMC, indicate the existence of rock assemblages representing a Gondwana active margin. The recognition of Neoproterozoic subduction-related magmatism provides additional arguments for the hypothesis that equivalents of the Teplá-Barrandian domain are exposed in the Central Sudetes.  相似文献   

4.
The lavas of the Zig-Zag Dal Formation of eastern North Greenland constitute a Mesoproterozoic tholeiitic flood basalt succession up to 1,350 m thick, extending >10,000 km2, and underlain by a sill complex. U–Pb dating on baddeleyite from one of the sills thought to be contemporaneous with the lava extrusion, gives an age of 1,382±2 Ma. The lavas, subdivided from oldest to youngest into Basal, Aphyric and Porphyritic units, are dominantly basaltic (>6 wt.% MgO), with more evolved lavas occurring within the Aphyric unit. The most magnesian lavas occur in the Basal unit and the basaltic lavas exhibit a generalised upward decrease in Mg number (MgO/(MgO + Fe2O3T)) through the succession. All of the lavas are regarded as products of variable degrees of olivine, augite and plagioclase fractionation and to be residual after generation of cumulates in the deep crust. The basaltic lavas display an up-section fall in the ratio of light to heavy rare-earth elements (LREE/HREE) but an up-section rise in Zr/Nb, Sc, Y and HREE. The older lavas (Basal and Aphyric units) are characterised by low Nd and Hf in contrast to higher values in the younger (Porphyritic unit) lavas. The Porphyritic Unit basalts are characterised by a notable enrichment in Fe and Ti. The Zig-Zag Dal succession is inferred to reflect an increase in melt fraction in the sub-lithospheric mantle, with melting commencing in garnet–lherzolite facies peridotites and subsequently involving spinel-facies mantle at increasingly shallow depths. Melting is deduced to have occurred beneath an attenuating continental lithosphere in conjunction with ascent of a mantle plume. Lithospheric contamination of primitive melts is inferred to have diminished with time with the Porphyritic unit basalts being products of essentially uncontaminated plume-source magmas. The high iron signature may reflect a relatively iron-rich plume source.  相似文献   

5.
Soil, mine tailing, and waste dump profiles above three mesothermal gold deposits in the Bohemian Massif with different anthropogenic histories have been studied. Their mineralogical, major element, and arsenic (As) contents and the contents of secondary arsenic minerals were analyzed. The As-bearing minerals were concentrated and determined using X-ray diffraction (XRD) analysis, the Debye-Scherrer powder method, scanning electron microscopy (SEM), and energy-dispersive microanalysis (EDAX). The amorphous hydrous ferric oxides (HFO), As-bearing goethite, K-Ba- or Ca-Fe- and Fe- arsenates pharmacosiderite, arseniosiderite, and scorodite, and sulfate-arsenate pitticite were determined as products of arsenopyrite or arsenian pyrite oxidation. The As behaviour in the profiles studied differs in dependence on the surface morphology, chemical and mineralogical composition of the soil, mine wastes or tailings, oxidation conditions, pH, presence of (or distance from) primary As mineralization in the bedrock, and duration of the weathering effect. Although the primary As mineralization and the bedrock chemical composition are roughly similar, there are distinct differences in the As behaviour amongst the Mokrsko, Roudný and Kaperské Hory deposits.  相似文献   

6.
The role of metamorphic processes (including postmagmatic ones) in the origin of mineral assemblages is estimated for the layered unit (LU) and barren rocks (BR) in the Pana Intrusion. Numerical simulations indicate that metamorphic processes simultaneously modified the mineralogical composition of the rocks, Pt and Pd compounds, and the fluids. The process resulted in systematic changes in the mineralogical and fluid composition and is realistically reproduced by physicochemical numerical simulations. Our results make it possible to estimate the effect of P-T parameters on the composition of metallic Pt and Pd and their sulfides, selenides, and tellurides and the composition of the fluid phase during the transformations and localization of the PGE ore mineralization.  相似文献   

7.
Metamorphic rocks at Milos are known in small outcrops beneath the volcanic formations, as xenoliths in the Traphores volcanic breccia and as pebbles in the Paleochora Quaternary deposits. These rocks seem to belong to three different metamorphic units which probably have intricate relationships in the basement: — the eclogites unit shows garnetjadeite or garnet-omphacite primary associations, with apparently late crystallization of lawsonite phenoblasts an recrystallization features at relatively low temperatures; — the glaucophane schist unit exhibits Jadeite+quartz or glaucophane+lawsonite primary mineralogy; — the greenschist facies unit shows low-pressure main assemblages, most generally developed after high-pressure events. The two former units involve tholeiitic meta-igneous rocks, having been spilitized before metamorphism; they generally suffered more or less advanced recrystallization features in the low-pressure field of the greenschist facies. The third unit shows only meta-sedimentary rocks, with the sole exception of one single meta-doleritic pebble having calk-alkaline affinities.Petrological and mineralogical studies, based upon 15 bulk-rock compositions and 178 probe-analysed data points, lead to suspect at least 2, perhaps 3, different metamorphic events rather than one single metamorphic evolution, to account for the 3 U distinguished. From the observation of the mineralogical assemblages and their evolution, the former events (stages 1 and 2) could be related to rapid subduction of ocean-floor or back-arc basalts, whereas, during the latter event (stage 3), the rocks experienced crystallization conditions involving both decreasing pressures and increasing temperatures.  相似文献   

8.
9.
Processing of most gold ores, other than placers, involves conventional gravity separation and direct cyanidation. The difficult (or refractory) gold ores are not amenable to direct cyanidation and these ores require detailed mineralogical investigations to assist in determining the recovery processes. There are six mineralogical factors that can contribute to poorer recoveries. These are 1. the nature of the gold-containing minerals, 2. the grain size of the gold minerals, 3. the nature of the gangue minerals, 4. the associated sulfide minerals, 5. coatings on gold, and 6. chemically bound or invisible gold.Geological Survey of Canada Contribution Number 13089  相似文献   

10.
The 40Ar/39Ar dating of alteration muscovite from the Rosebery Zn-Pb-Cu and Mount Lyell Cu deposits, Tasmania, Australia, has determined a succession of deformation events which occurred from 400-378 Ma, and comprises the Devonian Tabberabberan Orogeny. The dates from Rosebery range from 400-390 Ma, are a minimum age for mineralization, indicate the time of deformation, and provide a maximum age limit for granitoid emplacement in the vicinity of the deposit. The ages from the Mount Lyell field range from 400-378 Ma, are a minimum for mineralization, and date cleavage development. The North Lyell Cu mineralization, which was probably broadly coeval with deformation, may have formed at 400 Ma. All pre-Devonian alteration micas in the Rosebery and Mount Lyell areas have been recrystallized or reset. The Tabberabberan deformation in western Tasmania was broadly contemporaneous with widespread crustal shortening in southeastern Australia, as established from the dating of alteration minerals associated with deformation-related precious and base metal deposits.  相似文献   

11.
This paper presents materials on one of the units with PGE ore mineralization in the Pana Massif: the results of a detailed petrographic study and microprobe analyses of silicate and sulfide minerals and of the examination of mineral assemblages, typomorphic features of minerals, their crystallization succession and P–T conditions of this crystallization in the mineralized unit and the host mineralized and barren rocks, and the distribution of the fluid phase in them. Metamorphic processes that accompanied the development of the sulfide and PGE mineralization zones are analyzed, and it is established that the metamorphic evolution was associated with changes in the mineralogy of the rock and the composition of fluid in it. This process was of a unidirectional and systematic character and can be realistically reproduced in physicochemical models. The results of our research make it possible to assay the effect of P–T parameters and the fluid regime on the component composition of the solid phases and volatile components during the origin and localization of the PGE ore mineralization.  相似文献   

12.
The Fe-Ti deposits of the Suwaki District (North-East Poland) are magmatic in origin and were formed as a consequence of differentiation of magma melt that served as a parent for mineralization in the host and ore rocks. Ore mineralization in the host rocks is of accessory and segregational type and was formed in conditions characterized by low content of interprecipitable liquid, relatively high oxygen fugacity and slow, continuous cooling. Nearly all Ti was removed from titanomagnetite above the solvus; hence, the true exsolution of ulvöspinel was of minor importance in the host. Ore mineralization is characterized there by low content of impurities and low Fe/Ti ratio. High content of admixtures, extreme mineralogical and compositional variations, lack of geochemical cyclicity patterns in particular sections are typical of ore rocks. Both an increased amount of interprecipitable liquid and higher temperatures, stimulated by intermediate fO2, controlled the formation of ore rocks. The fO2 here remained credibly intermediate from early to late stages of mineral evolution. The formation of magma and minerals enriched in Fe-Ti, settling in a bottom part of the magma chamber, governed the formation of large ore bodies. Some other mechanisms such as filterpressing or immiscible segregation may be responsible for the formation of some discordant and concordant smaller ore bodies in the host. The disclosed partitioning pattern of major and minor elements in ore minerals of host and ore rocks suggests that titanum-free magnetite concentrate should be not practicable.  相似文献   

13.
A detailed mineralogical investigation using the classical methods of identification by X-ray diffraction and by optical properties in thin sections, has revealed thirty one phosphate minerals occurring in the Tsaobismund pegmatite. This investigation is complemented by wet chemical and, mainly, electron microprobe analyses performed on the phosphates known to be typomorphic or considered to be relevant to the hydrothermal alteration. Additionally, microprobe analyses are also given for garnet, gahnite, and ferrocolumbite associated with the phosphates. On the basis of their chemical composition, particularly in terms of their Fe, Mn, and Mg contents, three types of triphylites are distinguished. Triphylite 1 only occurs as a primary phase, triphylite 2 shows exsolution lamellae of sarcopside, and triphylite 3 is partly replaced by a fluorophosphate of the triplite-zwieselite series. These minerals constitute three generations of the parent phases, which were progressively transformed by metasomatic processes, hydrothermal alteration, and by weathering, to give finally three types of complex associations. The Li(Fe,Mn)PO4 minerals appear to be more sensitive to such transformations than those of the (Fe,Mn)2PO4F series. Four main stages of hydrothermal alteration processes have been recognized in the Tsaobismund pegmatite: (i) the Mason-Quensel sequence results from a progressive oxidation of Fe and Mn, and a concomitant Li-leaching of triphylite yielding ferrisicklerite and heterosite, successively; (ii) the metasomatic exchange of Na for Li produces alluaudite; in the present case, the formation of hagendorfite from triphylite 2 is considered to be earlier than the generation of alluaudite-Na occurring in the three associations; (iii) the hydration phase mainly transforms the parent Li(Fe,Mn)PO4 phase into grey hureaulite, associated with barbosalite and tavorite; (iv) the formation of fluorapatite, not particularly widespread, replaces alluaudite-Na, as well as zwieselite s.l. The following crystallization sequence of the initially formed phosphate minerals is proposed: triphylite 1 triphylite 2 + sarcopside (associated with garnet) triphylite 3 + zwieselite s.l. The most prominent feature of this succession is the increase in the Mg and Zn contents in the composition of the phosphates, as well as the decrease in their Li contents. The variations of the Fe/Mn ratios in this sequence are discussed. The succession triphylite-zwieselite within weakly differentiated and Li-poor pegmatites is of general significance.  相似文献   

14.
Cappadocia is essentially covered by nine rhyolitic ignimbrite units, being the products of a multi-phase volcanism of Upper Miocene-Pliocene age. Around Ürgüp and the Kizilirmak River, these ignimbrites constitute a volcanic-sedimentary succession together with lacustrine sediments, called the Ürgüp formation. In the zeolite occurrences of Cappadocia that were found in the lacustrine parts of pyroclastics outcropping around the Tuzköy, Sarihidir, Karain, Çökek, Ibrahim Pasa and Karadag areas, clinoptilolite is the most common mineral and is associated with chabazite, erionite and phillipsite in some areas. A gain of alkaline-earths from the lake water, which is compensated by a loss of alkalis from the glass, took place during the formation of the different zeolite assemblages, which were probably controlled by the composition of the parent glasses. The distribution of erionite confirms its relation with mesothelioma cases in Tuzköy, Sarihidir and Karain villages that are located outside tourist areas. The high incidence of malignant mesothelioma in Karain may be explained by uncontrolled occupational exposure to erionite. The fairy chimneys, canyons and underground cities, which are situated in the unaltered or slightly altered parts of the Kavak, Zelve, Cemilköy, Gördeles and Kizilkaya ignimbrites do not constitute any health risk for the inhabitants or for visitors.  相似文献   

15.
Summary Rare-metals mineralization of the Brockman deposit (Halls Creek Mobile Zone, NW Australia) is hosted in a fluorite-bearing, rhyolitic volcaniclastic unit informally termed the Niobium Tuff. The Tuff, more correctly described as a tuffaceous volcaniclastic deposit, is the lowermost unit of a sequence of trachyte-to-rhyolite lavas, trachyandesite subvolcanic rocks, and volcaniclastic units of the Brockman volcanics located within the Halls Creek Group, a thick, early Proterozoic volcano-sedimentary sequence. High precision SHRIMP ion-microprobe zircon dating of the Niobium Tuff gives an eruption age of 1870 ± 4 Ma. Regional geochronological constraints indicate the Niobium Tuff was deposited about 15 Ma before major orogenic activity affected the area. Despite folding, faulting and low-grade metamorphism, the Brockman volcanics show excellent preservation of primary volcanological features, including pillow-lavas and pillow-breccias, that suggest a dominantly subaqueous, below-wave-base emplacement environment. The style of eruption products and magma volume constraints suggest the trachyte-dominated volcanics were erupted from a small shield volcanic complex probably in a rift-related basin in a shallow-marine setting. The tectonic setting was intraplate but differs from most Tertiary to recent trachyte volcanic complexes which are largely subaerial, are built on relatively thick continental crust, and show no post-eruptive orogenic history. Brockman-style rare-metal deposits are characterized by preservation of subaqueous volcanics beneath a thick sedimentary sequence, eruption of early incompatible-element enriched products followed by less differentiated magmas, and fine-grained mineralogy influenced by alteration processes. Prospects exist for discovery of analogous deposits, particularly in early Proterozoic mobile belts and Tertiary intraplate shield volcanic provinces.
Geologie der an Vulkanite gebundenen Seltene-Metalle-Lagerstätte Brockman, Halls Creek Mobile Zone, Nordwest-Australien. I. Vulkanologie, Geochronologie und Petrographie der Brockman-Vulkanite
Zusammenfassung Selten-Metall-Vererzung der Brockman-Lagerstätten (Halls Creek Mobile Zone, NW Australien) sitzt in einer Fluorit-führenden, rhyolitischen vulkanoklastischen Einheit auf, die informell als der Niob-Tuff bezeichnet wird. Es handelt sich hier um ein vulkanoklastisches Tuff-Sediment; dieses ist die unterste Einheit einer Abfolge vor Trachyt bis Rhyolit-Laven, trachyandesitischen Subvulkaniten and vulkanoklastischen Einheiten der Brockman Vulkanite innerhalb der Halls Creek Gruppe, einer mächtigen frühproterozoischen vulkanosedimentdren Abfolge. Prüzisionsdatierungen des Niob Tuffs mit der SHRIMP Ionen-Mikrosonde ergeben ein Eruptionsalter von 1870 +-4 Millionen Jahren. Regionale geochronologische Zusammenhänge zeigen, daß der Niob Tuff etwa 15 Millionen Jahre vor einer größeren Orogenese, die das Gebiet betroffen hat, abgelagert wurde. Trotz Faltung, Bruchtektonik and niedriggradiger Metamorphose zeigen die Brockman-Vulkanite einen hervorragenden Erhaltungszustand primärer vulkanologischer Erscheinungen. Diese urnfassen auch Kissenlaven und KissenBreckzien, die eine vorwiegend subaquatische Ablagerung in ruhigem Wasser erkennen lassen. Die Art der Eruptionsprodukte and das Magmavolumen zeigen, daß die Trachytdominierten Vulkanite von einem kleinen Schildvulkan stammer, wahrscheinlich in einem Becken in einer Rift-Situation im seichten marinen Milieu. Die tektonische Situation war intraplate, aber unterscheidet sich von den meisten tertiären bis rezenten trachytischen Vulkan-Komplexen, die hauptsächlich subaerisch sind, auf einer relativ mächtigen kontinentalen Kruste aufsitzen, and keine post-eruptive orogene Entwicklung zeigen. Seltene-Metalle-Lagerstatten des Brockman-Typs rind durch die Erhaltung subaquatischer-Vulkanite unterhalb einer machtigen sedimentdren Abfolge gekennzeichnet; welters durch frühe Eruptionsprodukte, die an inkompatiblen Elementen angereichert sind, auf die dann weniger differenzierte Magmen folgten, und schließlich durch einen feinkörnigen Mineralbestand, der vor Umwandlungsprozessen betroffen war. Es besteht die Möglichkeit der Entdeckung analoger Lagerstätten, besonders in frühproterozoischen mobilen Gürteln und in tertidren intraplate Schildvulkan Provinzen.


With 5 Figures

Deceased  相似文献   

16.
A large number of the copper deposits, associated with the eastern ligurian ophiolites, are linked to the volcano-sedimentary sequences and, in minor amounts, to the ophiolitic basal breccias partially covering the intrusive rocks (ultramafites and gabbros). Some of these Fe-Cu-Zn mineralizations were selected because of their well defined stratigraphic and structural features, which, together with the textural and mineralogical characters and the trace elements in sulphides support the following considerations: - the stratiform mineralizations in the basal breccias show evidence of a sedimentary deposition preceding any consistent emplacement of a volcanic cover; - the stratabound deposits between the volcanic series and the sedimentary cover originate from hydrothermal or volcanic (exhalative) processes; - the stratabound deposits inside the volcanic pile show textural and mineralogical evidence of a volcanic origin with a relatively high temperature of formation; - the stockwork mineralizations, with their epigenetic characters, are of hydrothermal origin, probably related to subsea-floor convection cells.  相似文献   

17.
Summary The evolution of the Mt. Somma caldera is reconstructed by means of volcanological, geological and geomorphologic data. The present caldera shape results from two caldera forming events: (a) break-up of the upper part of the older structure, which occurred between 17 and 8Kyr B.P. through a series of external volcaniclastic debris flow depositions and internal collapses into a cored-out vent. (b) W–SW directed sector collapse of the enlarged Mt. Somma crater, caused by excess vapour pressure generated during the Avellino eruption (3.5Kyr B.P.). At this time, the morphology of the Mt. Somma crater probably resembled the demolished crater formed in 1980 at Mt. St. Helens. Flank failure of Mt. Somma during the Avellino eruption was probably caused both by a migration of the vent to the west and a drastic change of the hydrogeological conditions at depth. Flank failure processes were extended to the S–SE sector of the Mt. Somma edifice during the 79 A.D. and 472 A.D. eruptions. After the 472 A.D. eruption interplinian activity during the Middle Ages resulted in the formation of the Vesuvius cone inside the Mt. Somma caldera.  相似文献   

18.
Partial spilitization of a 9 km thick pile of flood basalts with highly vesicular flow tops gave rise to patterns of secondary mineralogy at different scales: (a) a local pattern of mineralogical variation from the almost unaltered bottom towards the altered top of each flow, and (b) an overall pattern, comparing flow tops throughout the pile, with changes in mineralogical composition within a sequence of metamorphic zones and facies. The local patterns mimic the trend of the overall pattern, but are of opposite direction and telescoped. Thus, a gradual ordering and Andepletion of the secondary albite and increases in the Fe*/Al ratio of epidote and pumpellyite upwards within individual flows are comparable in range to corresponding overall changes downwards throughout several kilometres. The mineralogical changes within the flows diminish in range towards the more altered deeper part of the pile.The local and overall patterns cannot be interpreted in terms of grade. They represent trends from metastable towards stable equilibrium, this latter only approached in the flow tops of the lower part of the pile. The patterns of secondary mineralogy were formed by an interplay of metamorphic gradients at different scales at any given time, and as burial proceeded. The overall pattern was caused by depth-controlled gradients: increasing P fluid, temperature and temperature-induced increase of reaction rates, and decreasing fO2 (downwards in the pile). The local patterns resulted from permeability-controlled gradients: increasing reaction rates, fO2 and contrast in chemical activity between different domains, and decreasing P fluid (upwards in each flow). The mineralogical observations reported in this paper fall into line if the overall temperature-induced increase of reaction rates and the local permeability-controlled rate factors played the leading role during burial metamorphism of the pile.  相似文献   

19.
Geological and mineralogical specificity of the world’s largest Witwatersrand gold deposit was defined by geodynamic processes in the Late Archean. The primary crust composed of felsic rocks (“gray gneisses”) was intruded 2.9–3.1 Ga ago by mafic melts that gave rise to greenstone belts. This was followed by the appearance of long-lived granulite mobile zones that promoted the formation of hydrosphere and atmosphere accompanied by an intense acidic leaching (weathering) of rocks in the greenstone belts. Numerous conglomerate interbeds were formed in the Witwatersrand Basin section due to vigorous eolian processes and floodwater washouts that produced a fan channel system mainly filled with quartz pebbles. At present, most researchers support a modified paleoplacer model of the origin of gold mineralization in Witwatersrand, suggesting a hydrothermal-metamorphic redistribution of the primary placer gold. According to various hydrothermal models, gold was introduced into sedimentary rocks in a water medium from outer deep sources or during the filtration of postsedimentary hydrothermal fluids. The present communication suggests that a significant portion of gold contained in reefs could be delivered to the sedimentation basin by the auriferous hydrothermal quartz of pebble or sand dimension that was metamorphosed at approximately 350–400°C. Metamorphism of gold was accompanied by its purification, transfer to matrix, and hydrothermal intrastratal redistribution.  相似文献   

20.
Arguments in favor of magmatic or metasomatic genesis of the Katugin rare-metal ore deposit are discussed. The geological and mineralogical features of the deposit confirm its magmatic origin: (1) the shape of the ore-bearing massif and location of various types of granites (biotite, biotite–amphibole, amphibole, and amphibole–aegirine); (2) the geochemical properties of the massif rocks corresponding to A type granite (high alkali content (up to 12.3% Na2O + K2O), extremely high FeO/MgO ratio (f = 0.96–1.00), very high content of the most incoherent elements (Rb, Li, Y, Zr, Hf, Ta, Nb, Th, U, Zn, Ga, and REE) and F, and low concentrations of Ca, Mg, Al, P, Ba, and Sr); (3) Fe–F-rich rock-forming minerals; (4) no previously proposed metasomatic zoning and regular replacement of rock-forming minerals corresponding to infiltration fronts of metasomatism. The similar ages of the barren (2066 ± 6 Ma) and ore-bearing (2055 ± 7 Ma) granites along with the features of the ore mineralization speak in favor of the origin of the ore at the magmatic stage of the massif’s evolution. The nature of the ore occurrence and the relationships between the ore minerals support their crystallization from F-rich aluminosilicate melt and also under melt liquation into aluminosilicate and fluoride (and/or aluminofluoride) fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号