首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
三峡库区草地群落净生态系统生产力(NEP)的核算对于碳源/汇功能评价和生态屏障功能诊断具有重要理论意义。本文选取三峡库区的三种典型草地群落(雀梅藤群落、芒草群落、扭黄茅群落)为研究对象。基于气象数据和基础数据(高程、植被类型、土壤质地等),利用BIOME-BGC模型模拟并分析了1999—2013年库区草地群落植被NPP、NEP的变化特征及其与水热因子的相关性,分析了碳储量的变化特征及储存分布差异。结果表明:三种草地群落的植被NPP、NEP的年内变化规律均呈现倒U型,其中7—8月数值最大,呈现出明显碳源—碳汇—碳源的变化特征;三种草地群落多年NEP的平均值分别为6.63、4.85、4.17 g C·m~(-2)·a~(-1),碳汇功能明显。不同草地群落NPP、NEP对水热因子响应差异明显,其中雀梅藤群落NPP与温度呈显著正相关,与降水量呈负相关;芒草群落、扭黄茅群落NPP与温度均呈负相关,与降水量呈正相关;三个草地群落的NEP与温度均呈正相关,与降水量均呈负相关。三种草地群落碳储量丰富,多年累计值分别为33 979、50 750、29 236 kg C·m~(-2),且85%~90%储存在土壤中,植被碳储量最少约为3%~4%。  相似文献   

2.
中国净生态系统生产力空间分布及变化趋势研究   总被引:1,自引:0,他引:1  
分析净生态系统生产力(NEP)的空间分布特点和变化趋势,对科学评估中国生态系统的固碳能力和制定气候变化应对政策/措施具有重要意义,然而目前这方面的研究较为缺乏。该文借助多源空间数据,对2000-2015年中国的NEP进行估算并分析其空间分布特点和变化趋势。结果表明:2000-2015年,中国陆地NEP约为0.134 Pg C a~(-1),表现为碳汇,碳汇高值区主要分布在云南、四川等省域,而碳源高值区主要分布在西部的西藏和青海等区域;从时间变化趋势看,中国生态系统的碳汇能力总体呈增强趋势,特别是西藏南部、四川南部以及云南、陕西、安徽和江苏等省的部分区域;NEP呈上升、基本不变和下降趋势的省级区域数量占比分别为55%、29%和16%;NEP的空间分布和年际变化主要受NPP、气温和降水的影响。  相似文献   

3.
1980s-2010s中国陆地生态系统土壤碳储量的变化   总被引:6,自引:2,他引:4  
徐丽  于贵瑞  何念鹏 《地理学报》2018,73(11):2150-2167
土壤作为陆地生态系统有机碳库的主体,在全球碳循环中起着重要作用。然而,当前区域土壤有机碳储量的变化情况及其碳源/汇功能仍然不清楚。利用中国1980s (1979-1985年)第二次土壤普查数据,同时收集整理2010s(2004-2014年)已发表的有关中国土壤有机碳储量(0~20 cm和0~100 cm)的文献数据,综合评估了1980s-2010s中国土壤有机碳储量的变化情况,并分析森林、草地、农田和湿地等生态系统土壤碳源/汇功能;同时结合现有的中国植被碳储量变化研究,进一步探讨了1980s-2010s中国陆地生态系统的碳源/汇效应。研究发现:① 1980s-2010s中国土壤(0~100 cm)有机碳储量净增长3.04±1.65 Pg C,增长速率为0.101±0.055 Pg C yr-1,其中表层土壤(0~20 cm)的碳汇效应明显;② 森林土壤是固碳主体,净增长2.52±0.77 Pg C,而草地和农田土壤增长有限,分别为0.40±0.78和0.07±0.31 Pg C;③ 湿地有机碳储量净减少0.76±0.29 Pg C;④ 中国陆地生态系统的碳汇效应较强,总碳汇量相当于同期(1980-2009年)化石燃料和水泥生产排放CO2总量的14.85%~27.79%。随着中国森林和草地生态系统植被和土壤的进一步保护、恢复和重建,中国陆地生态系统具有较大的碳汇潜力,在未来全球碳平衡中将发挥更大的作用。  相似文献   

4.
陈雪娇  周伟  杨晗 《干旱区地理》2020,43(6):1583-1592
碳源/汇是解释地球大气碳循环过程的重要指标,探究三江源的碳源/汇特征对于理解该地 区植被对全球气候变化的响应具有重要意义。三江源以脆弱的草地生态系统为主,且对全球气候 变化非常敏感。该地区生态环境极其脆弱,大部分地区条件恶劣导致实测数据稀缺,很难对该地 区的碳源/汇时空格局进行完整剖析。因此通过以三江源 5 种典型草地群落(金露梅、紫花针茅、风 毛菊、小蒿草、及青藏薹草群落)为研究对象,基于 BIOME-BGC 模型,利用地理数据、气象数据和植 被生理参数等数据,得出 2001—2017 年三江源草地群落的净初级生产力(NPP)、净生态系统生产 力(NEP)模拟值,并对草地群落 NPP、NEP 变化特征与气温、降水相关性以及碳利用效率变化等特 征进行了综合分析。结果表明:三江源区 NPP、NEP 在空间格局上,表现为由东南向西北数值逐渐 递减趋势;5 种典型草地群落多年 NPP 均呈现逐年增高趋势,其平均值为 196.06 g C·m -2·a -1。其 中,金露梅群落 NPP 平均值最高为 342.00 g C·m-2·a-1,青藏薹草群落 NPP 平均值最低为 55.93g C·m-2·a-1;5 种草地群落 NEP 的多年平均值为 49.02 g C·m-2·a-1,金露梅、紫花针茅及青藏薹草 3 种植 被群落的 NEP 值呈缓慢的上升趋势,风毛菊和小蒿草群落呈缓慢下降趋势。研究发现三江源草地 生态系统具有显著的碳汇作用,且不同群落 NPP、NEP 对气温和降水的响应程度有所差异,5 种群 落 NPP 与气温均呈显著正相关,但 NPP、NEP 与降水量的相关性较低;5 种群落均具有较强固碳潜 力,除金露梅外其余植被群落的碳利用率均在 0.625 以上。  相似文献   

5.
气候变化对净生态系统生产力的影响   总被引:26,自引:0,他引:26  
周涛  史培军  孙睿  王绍强 《地理学报》2004,59(3):357-365
基于生态系统碳平衡方程以及净第一性生产力 (NPP) 和气候资料反演了1km分辨率的中国土壤异养呼吸系数 (aij),结果表明:aij总体上是东南和东北地区高,西北地区低;和NPP相比,东南沿海和华南的大部分地区的aij值并不大,而在东北北部和东部有大面积的aij高值区。这表明当气候适宜时,这些地区的土壤异养呼吸将具有较大的增长潜力。在假定气温平均升高1.5oC,降水平均增加5%的情景下,对中国净生态系统生产力 (NEP) 的研究表明:生态系统与大气的碳通量都有所增加,其中NPP平均增加了6.2%,土壤异养呼吸平均增加了5.5%,不同生态系统的NEP存在很大的差异,其中最稳定最有潜力的自然生态系统的碳汇是北方落叶针叶林;对人工植被而言,最多最稳定的碳汇是一年一熟作物;而双季稻连作喜温作物和单 (双) 季稻连作喜凉作物生态系统起着较稳定的碳源作用。  相似文献   

6.
气候变化及其对植被净初级生产力的影响是全球变化研究的核心内容之一。基于空间化的CENTURY生物过程模型,分析1981-2010年内蒙古草地净初级生产力(NPP)的时空演变规律及其对关键气候因子的敏感性特征。结果表明:近30年内蒙古草地大部分区域NPP呈下降态势但趋势并不显著,全区平均降速约为1.17 g C/m2·a;NPP年代际变化时空差异较大,1980s至1990s约69.65%的区域NPP下降,1990s至2000s NPP下降加剧,下降面积较前者扩大了17.50%;NPP对降水与温度的敏感性特征空间异质性较强,但总体上区域降水减少可能是近30年内蒙古草地NPP下降的主要因素,温度升高同样会导致草地NPP下降,但作用程度较小。  相似文献   

7.
基于样地资料、文献资料和森林资源清查资料,以及不同森林类型蓄积、生物量、年凋落量和土壤呼吸之间的函数关系,估算1999-2008年间中国森林生态系统的NEP(净生态系统生产力)、△Cbiomass(现存森林植被碳储量增量)和NR(非呼吸代谢消耗光合产物),再根据森林生态系统碳平衡方程,初步估算中国森林土壤碳汇(△Csoil=NEP-△Cbiomass-NR)。研究结果表明:中国森林生态系统总的NEP、△Cbiomass、NR和△Csoil分别为157.530、48.704、31.033和77.793 Tg C yr-1,单位面积NEP、△Cbiomass、NR和△Csoil分别为101.247、31.303、19.945和49.999 g C mm-2 yr-1。中国森林土壤碳汇存在较大的空间差异,江西、湖南、浙江、福建、安徽、山西、陕西、广西和辽宁9省(区)森林土壤为碳源,释放的碳约为25.507 Tg C yr-1。其他22个省(区)森林土壤为碳汇,吸收的碳约为103.300 Tg C yr-1。本研究建立了基于森林资源清查资料的中国森林土壤碳汇评价方法,是对现有的基于统计资料进行森林生态系统碳循环研究的有益补充,将推动具有可比性的、按照一致性的研究方法开展的区域尺度森林土壤固碳功能研究。  相似文献   

8.
植被净初级生产力(NPP)对气候变化的响应研究是全球变化研究的核心内容之一。在区域尺度上研究NPP年际间的空间变化规律,探究气候因子与植被生长的关系,是应对气候变化区域响应、探讨区域生态过程的科学基础。基于SPOT VEGETATION NDVI植被指数数据、气候和植被分类数据,利用光能利用率模型(CASA)估算了中国南方红壤丘陵区泰和县1998-2012年植被NPP,分析了NPP时空分布特征及其与气候因子的相关性。结果表明:1 1998-2012年泰和县植被年均NPP为762 g C/m2·a,不同植被类型差异明显,空间上表现出东西高、中间低的分布特征;2 1998-2012年泰和县植被NPP总体呈增长趋势,年际波动较大,平均值为2.21×106g C/a;3研究区NPP与年降水量呈不显著正相关关系,与年均气温呈显著负相关关系,表明温度是影响该地区植被NPP的主要气候因子。  相似文献   

9.
气候变化对中亚草地生态系统碳循环的影响研究   总被引:1,自引:0,他引:1       下载免费PDF全文
韩其飞  陆研  李超凡 《干旱区地理》2018,41(6):1351-1357
准确评估草地生产力、碳源/碳汇功能,分析气候变化对草地生态系统碳循环的影响,对于草地资源的合理开发和有效保护至关重要。选取对气候变化以及人类干扰高度敏感的中亚干旱区草地生态系统为研究对象,利用Biome-BGC模型,模拟分析其NPP、NEP的年际变化趋势及其空间分布格局。结果显示:(1)1979-2011年中亚地区草地生态系统NPP年平均值为135.6 gC·m-2·a-1,且随着时间的推移呈现出波动下降的趋势,下降速率为0.34 gC·m-2·a-1。(2)NEP的年平均值为-8.3 gC·m-2·a-1,表现为碳源,且该值随着时间的推移呈现出波动上升的趋势,上升速率为0.58 gC·m-2·a-1。(3)NPP高值区域在降水较为丰富的天山山脉附近以及哈萨克斯坦北部。(4)NPP的年际变化与降水量的年际变化趋势基本一致,相关系数为0.52;NPP与温度的相关系数为-0.28,未达到显著相关水平。本研究实现了Biome-BGC模型在中亚干旱区草地生态系统的应用,对评价干旱区草地生态系统碳源/碳汇功能及其在全球碳循环和全球变化中的作用、实现中亚草地生态系统的可持续利用、完善区域和全球碳循环理论体系具有重要意义。  相似文献   

10.
基于2000年以来塔里木河下游生态输水资料、气象数据、土地利用/覆被变化数据等,结合修正的CASA(Carnegie-Ames-Stanford approach)模型和土壤微生物呼吸模型(Heterotrophic respiration,R_H)估算了2001—2019年植被净生态系统生产力(Net ecosysterm productivity,NEP),分析了植被碳源/汇空间分布变化,探讨了塔里木河下游生态输水对植被碳源/汇变化的影响。结果表明:(1)随着2000年以来塔里木河下游生态输水,下游退化的生态系统有一定程度的恢复,植被碳汇区域呈现扩大的趋势。2001—2019年NEP以0.541 g C·m~(-2)·a~(-1)的速率呈现上升趋势,其中夏季增加速率最大,为0.406 g C·m~(-2)·a~(-1),增加的区域主要位于大西海子水库北部、英苏、博孜库勒湿地、喀尔达依湿地以及台特玛湖。碳汇面积从2001年的71 km2增加至2019年的355 km~2,增加了4倍。(2)在季节变化上,夏季碳汇面积为109 km~2,在四季中占比最大,春秋次之,冬季无明显碳汇面积。(3)塔里木河下游生态系统碳汇面积变化次序为:草地林地耕地未利用地水域建设用地。此外,林地和草地年平均变化率最高,分别为2.69 km~2·a~(-1)和3.57 km~2·a~(-1)。生态输水量与碳汇面积有很好的线性关系,碳汇面积变化存在约1 a的滞后效应。  相似文献   

11.
Global climate change has become a major concern worldwide. The spatio-temporal characteristics of net ecosystem productivity(NEP), which represents carbon sequestration capacity and directly describes the qualitative and quantitative characteristics of carbon sources/sinks(C sources/sinks), are crucial for increasing C sinks and reducing C sources. In this study, field sampling data, remote sensing data, and ground meteorological observation data were used to estimate the net primary productivity(NPP) in the Inner Mongolia grassland ecosystem(IMGE) from 2001 to 2012 using a light use efficiency model. The spatio-temporal distribution of the NEP in the IMGE was then determined by estimating the NPP and soil respiration from 2001 to 2012. This research also investigated the response of the NPP and NEP to the main climatic variables at the spatial and temporal scales from 2001 to 2012. The results showed that most of the grassland area in Inner Mongolia has functioned as a C sink since 2001 and that the annual carbon sequestration rate amounts to 0.046 Pg C/a. The total net C sink of the IMGE over the 12-year research period reached 0.557 Pg C. The carbon sink area accounted for 60.28% of the total grassland area and the sequestered 0.692 Pg C, whereas the C source area accounted for 39.72% of the total grassland area and released 0.135 Pg C. The NPP and NEP of the IMGE were more significantly correlated with precipitation than with temperature, showing great potential for C sequestration.  相似文献   

12.
Global climate change has become a major concern worldwide. The spatio-temporal characteristics of net ecosystem productivity (NEP), which represents carbon sequestration capacity and directly describes the qualitative and quantitative characteristics of carbon sources/sinks (C sources/sinks), are crucial for increasing C sinks and reducing C sources. In this study, field sampling data, remote sensing data, and ground meteorological observation data were used to estimate the net primary productivity (NPP) in the Inner Mongolia grassland ecosystem (IMGE) from 2001 to 2012 using a light use efficiency model. The spatio-temporal distribution of the NEP in the IMGE was then determined by estimating the NPP and soil respiration from 2001 to 2012. This research also investigated the response of the NPP and NEP to the main climatic variables at the spatial and temporal scales from 2001 to 2012. The results showed that most of the grassland area in Inner Mongolia has functioned as a C sink since 2001 and that the annual carbon sequestration rate amounts to 0.046 Pg C/a. The total net C sink of the IMGE over the 12-year research period reached 0.557 Pg C. The carbon sink area accounted for 60.28% of the total grassland area and the sequestered 0.692 Pg C, whereas the C source area accounted for 39.72% of the total grassland area and released 0.135 Pg C. The NPP and NEP of the IMGE were more significantly correlated with precipitation than with temperature, showing great potential for C sequestration.  相似文献   

13.
1980s-2010s内蒙古草地表层土壤有机碳储量及其变化   总被引:1,自引:1,他引:0  
戴尔阜  翟瑞雪  葛全胜  吴秀芹 《地理学报》2014,69(11):1651-1660
以我国内蒙古草原为研究区域,结合1982-1988年第二次土壤普查资料以及2011-2012年实地考察数据,构建了基于遥感数据和土壤数据的区域表层土壤有机碳储量估算方法,对研究区1980s和2010s表层土壤有机碳储量、空间分布特征及其变化进行研究,结果表明:(1) 1980s、2010s内蒙古草地表层土壤 (0~20 cm) 有机碳储量分别为2.05 Pg C、2.17 Pg C,土壤有机碳密度约为3.48 kg C·m-2、3.69 kg C·m-2,其空间分布上呈现从草甸草原、典型草原、荒漠草原逐渐降低的特征;(2) 1982-2012年间,内蒙古草地表层土壤有机碳储量略有增加,但增加幅度较小,其中草甸草原和典型草原表层土壤有机碳储量增加,荒漠草原则表现为减少。研究结果将为研究区因地制宜地采取固碳措施,实现草地可持续管理提供科学参考。  相似文献   

14.
Soil carbon sequestration and potential has been a focal issue in global carbon research. Under the background of global change, the estimation of the size as well as its change of soil organic carbon(SOC) storage is of great importance. Based on soil data from the second national soil survey and field survey during 2011–2012, by using the regression method between sampling soil data and remote sensing data, this paper aimed to investigate spatial distribution and changes of topsoil(0–20 cm) organic carbon storage in grasslands of Inner Mongolia between the 1980 s and 2010 s. The results showed that:(1) the SOC storage in grasslands of Inner Mongolia between the 1980 s and 2010 s was estimated to be 2.05 and 2.17 Pg C, with an average density of 3.48 and 3.69 kg C·m–2, respectively. The SOC storage was mainly distributed in the typical steppe and meadow steppe, which accounted for over 98% of the total SOC storage. The spatial distribution showed a decreased trend from the meadow steppe, typical steppe to the desert steppe, corresponding to the temperature and precipitation gradient.(2) SOC changes during 1982–2012 were estimated to be 0.12 Pg C, at 7.00 g C·m–2·yr–1, which didn't show a significant change, indicating that SOC storage in grasslands of Inner Mongolia remained relatively stable over this period. However, topsoil organic carbon showed different trends of carbon source/sink during the past three decades. Meadow steppe and typical steppe had sequestered 0.15 and 0.03 Pg C, respectively, served as a carbon sink; while desert steppe lost 0.06 Pg C, served as a carbon source. It appears that SOC storage in grassland ecosystem may respond differently to climate change, related to vegetation type, regional climate type and grazing intensity. These results might give advice to decision makers on adopting suitable countermeasures for sustainable grassland utilization and protection.  相似文献   

15.
内蒙古草原NPP时空变化及驱动力   总被引:1,自引:1,他引:0  
滑永春  萨如拉  王冰 《中国沙漠》2021,41(5):130-139
植被净初级生产力(NPP)及驱动力分析是全球变化研究的核心内容。以1982—2015年内蒙古草原为研究对象,基于GIMMS NDVI3g、ERA5气象和草原类型数据,采用CASA模型生成年草原NPP。综合运用趋势分析、偏相关、复相关及残差分析法探讨1982—2015年草原NPP变化趋势,并定量确定气候因子和人类活动对草原动态变化的影响程度。结果表明:(1)内蒙古1982—2015年NPP极显著和显著增加的草原面积占草原总面积的11.76%、18.92%。NPP极显著和显著减少的草原面积占草原总面积的4.26%、8.08%。草原NPP增加的面积大于减少的面积,草原处于恢复状态。(2)内蒙古草原92.87%的区域NPP与气候因子之间表现出很好的相关性,气温驱动、降水驱动和降水、气温复合驱动分别占总面积的2.06%、70.71%和20.11%,气候变化对3种草原影响程度荒漠草原>典型草原>草甸草原。(3)人类活动对草原NPP也产生很大影响。其中起到正向作用通过显著性检验(P<0.1)的区域占草原总面积的41.12%,起到负作用(P<0.1)的占5.34%。综上所述,1982—2015年内蒙古草原总体处于恢复状态,在气候和人类活动共同作用下生态环境得到了极大改善。  相似文献   

16.
The net primary production (NPP) of grasslands in northeastern Asia was estimated using improved CASA model with MODIS data distributed from 2000 and ground data as driving variables from 2000 to 2005. Average annual NPP was 146.05 g C m?2 yr?1 and average annual total NPP was 0.32 Pg C yr?1 in all grasslands during the period. It was shown that average annual grassland NPP in the whole northeastern Asia changed dramatically from 2000 to 2005, with the highest value of 174.80 g C m?2 yr?1 in 2005 and the lowest value of 125.65 g C m?2 yr?1 in 2001. On regional scale, average annual grassland NPP of 179.71 g C m?2 yr?1 in southeastern Russia was the highest among the three main grassland regions in the six years. Grasslands in northern China exhibited the highest average annual total NPP of 0.16 Pg C yr?1 and contributed 51.42% of the average annual total grassland NPP in northeastern Asia. Grassland NPP in northeastern Asia also showed a clear seasonal pattern with the highest NPP occurred in July every year. Average monthly grassland NPP in southeastern Russia was the highest from May to August while average monthly grassland NPP in northern China showed the highest NPP before May and after August. The change rate distribution of grassland NPP between the former three years and the latter three years showed grassland NPP changed slightly between the two stages in most regions, and that NPP change rate in 80.98% of northeastern Asia grasslands was between –0.2 and 0.2. Grassland NPP had close correlation with precipitation and temperature, that indicates climate change will influence the grassland NPP and thus have a great impact on domestic livestock in this region in future.  相似文献   

17.
Wetland ecosystems are crucial to the global carbon cycle.In this study,the Zhalong Wetland was investigated.Based on remote sensing and meteorological observation data from 1975–2018 and the downscaled fifth phase of the coupled model intercomparison project (CMIP5) climate projection dataset from 1961–2100,the parameters of a net primary productivity (NPP) climatic potential productivity model were adjusted,and the simulation ability of the CMIP5 coupled models was evaluated.On this basis,we analysed the spatial and temporal variations of land cover types and landscape transformation processes in the Zhalong Nature Reserve over the past 44 years.We also evaluated the influence of climate change on the NPP of the vegetation,microbial heterotrophic respiration (Rh),and net ecosystem productivity (NEP) of the Zhalong Wetland and predicted the carbon sequestration potential of the Zhalong Wetland from 2019–2029 under the representative concentration pathways (RCP) 4.5 and RCP 8.5 scenarios.Our results indicate the following:(1) Herbaceous bog was the primary land cover type of the Zhalong Nature Reserve,occupying an average area of 1168.02±224.05 km~2,equivalent to 51.84%of the total reserve area.(2)Since 1975,the Zhalong Nature Reserve has undergone a dry–wet–dry transformation process.Excluding several wet periods during the mid-1980s to early 1990s,the reserve has remained a dry habitat,with particularly severe conditions from 2000 onwards.(3) The 1975–2018 mean NPP,Rh,and NEP values of the Zhalong Wetland were 500.21±52.76,337.59±10.80,and 162.62±45.56 g C·m~(-2)·a~(-1),respectively,and an evaluation of the carbon balance indicated that the reserve served as a carbon sink.(4) From 1975–2018,NPP showed a significant linear increase,Rh showed a highly significant linear increase,while the increase in the carbon absorption rate was smaller than the increase in the carbon release rate.(5) Variations in NPP and NEP were precipitation-driven,with the correlations of NPP and NEP with annual precipitation and summer precipitation being highly significantly positive(P0.001);variations in Rh were temperature-driven,with the correlations of Rh with the average annual,summer,and autumn temperatures being highly significantly positive (P0.001).The interaction of precipitation and temperature enhances the impact on NPP,Rh and NEP.(6) Under the RCP 4.5 and RCP 8.5 scenarios,the predicted carbon sequestration by the Zhalong Wetland from 2019–2029 was 2.421 (±0.225)×10~(11) g C·a~(-1) and 2.407 (±0.382)×10~(11) g C·a~(-1),respectively,which were both lower than the mean carbon sequestration during the last 44 years (2.467 (±0.950)×10~(11) g C·a~(-1)).Future climate change may negatively contribute to the carbon sequestration potential of the Zhalong Wetland.The results of the present study are significant for enhancing the abilities of integrated eco-meteorological monitoring,evaluation,and early warning systems for wetlands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号