首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We present a numerical study of rapid, so-called type III migration for Jupiter-sized planets embedded in a protoplanetary disc. We limit ourselves to the case of outward migration, and study in detail its evolution and physics, concentrating on the structure of the corotation and circumplanetary regions, and processes for stopping migration. We also consider the dependence of the migration behaviour on several key parameters. We perform this study using global, two-dimensional hydrodynamical simulations with adaptive mesh refinement. We find that the outward-directed type III migration can be started if the initial conditions support the initial average non-dimensional migration rate bigger than one. Unlike the inward-directed migration, in the outward migration the migration rate increases due to the growing of the volume of the co-orbital region. We find the migration to be strongly dependent on the rate of the mass accumulation in the circumplanetary disc, leading to two possible regimes of migration, fast and slow. The structure of the co-orbital region and the stopping mechanism differs between these two regimes.  相似文献   

2.
We present a numerical study of rapid, so-called type III migration for Jupiter-sized planets embedded in a protoplanetary disc. We limit ourselves to the case of inward migration, and study in detail its evolution and physics, concentrating on the structure of the corotation and circumplanetary regions, and processes for stopping migration. We also consider the dependence of the migration behaviour on several key parameters. We perform this study using the results of global, two-dimensional hydrodynamical simulations with adaptive mesh refinement. The initial conditions are chosen to satisfy the condition for rapid inward migration. We find that type III migration can be divided into two regimes, fast and slow. The structure of the co-orbital region, mass accumulation rate and migration behaviour differ between these two regimes. All our simulations show a transition from the fast to the slow regime, ending type III migration well before reaching the star. The stopping radius is found to be larger for more massive planets and less massive discs. A sharp density drop is also found to be an efficient stopping mechanism. In the fast migration regime the migration rate and induced eccentricity are lower for less massive discs, but almost do not depend on planet mass. Eccentricity is damped on the migration time-scale.  相似文献   

3.
We investigate the fast (type III) migration regime of high-mass protoplanets orbiting in protoplanetary discs. This type of migration is dominated by corotational torques. We study the details of flow structure in the planet's vicinity, the dependence of migration rate on the adopted disc model and the numerical convergence of models (independence of certain numerical parameters such as gravitational softening).
We use two-dimensional hydrodynamical simulations with adaptive mesh refinement, based on the flash code with improved time-stepping scheme. We perform global disc simulations with sufficient resolution close to the planet, which is allowed to freely move throughout the grid. We employ a new type of equation of state in which the gas temperature depends on both the distance to the star and planet, and a simplified correction for self-gravity of the circumplanetary gas.
We find that the migration rate in the type III migration regime depends strongly on the gas dynamics inside the Hill sphere (Roche lobe of the planet) which, in turn, is sensitive to the aspect ratio of the circumplanetary disc. Furthermore, corrections due to the gas self-gravity are necessary to reduce numerical artefacts that act against rapid planet migration. Reliable numerical studies of type III migration thus require consideration of both the thermal and the self-gravity corrections, as well as a sufficient spatial resolution and the calculation of disc–planet attraction both inside and outside the Hill sphere. With this proviso, we find type III migration to be a robust mode of migration, astrophysically promising because of a speed much faster than in the previously studied modes of migration.  相似文献   

4.
5.
There is evidence for the existence of massive planets at orbital radii of several hundred au from their parent stars where the time-scale for planet formation by core accretion is longer than the disc lifetime. These planets could have formed close to their star and then migrated outwards. We consider how the transfer of angular momentum by viscous disc interactions from a massive inner planet could cause significant outward migration of a smaller outer planet. We find that it is in principle possible for planets to migrate to large radii. We note, however, a number of effects which may render the process somewhat problematic.  相似文献   

6.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

7.
8.
9.
10.
11.
The migration and growth of protoplanets in protostellar discs   总被引:1,自引:0,他引:1  
We investigate the gravitational interaction of a Jovian-mass protoplanet with a gaseous disc with aspect ratio and kinematic viscosity expected for the protoplanetary disc from which it formed. Different disc surface density distributions are investigated. We focus on the tidal interaction with the disc with the consequent gap formation and orbital migration of the protoplanet. Non-linear two-dimensional hydrodynamic simulations are employed using three independent numerical codes.
A principal result is that the direction of the orbital migration is always inwards and such that the protoplanet reaches the central star in a near-circular orbit after a characteristic viscous time‐scale of ∼104 initial orbital periods. This is found to be independent of whether the protoplanet is allowed to accrete mass or not. Inward migration is helped by the disappearance of the inner disc, and therefore the positive torque it would exert, because of accretion on to the central star. Maximally accreting protoplanets reach about 4 Jovian masses on reaching the neighbourhood of the central star. Our results indicate that a realistic upper limit for the masses of closely orbiting giant planets is ∼5 Jupiter masses, if they originate in protoplanetary discs similar to the minimum-mass solar nebula. This is because of the reduced accretion rates obtained for planets of increasing mass.
Assuming that some process such as termination of the inner disc through a magnetospheric cavity stops the migration, the range of masses estimated for a number of close orbiting giant planets as well as their inward orbital migration can be accounted for by consideration of disc–protoplanet interactions during the late stages of giant planet formation.  相似文献   

12.
13.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   

14.
15.
In addition to the scalar Shakura–Sunyaev α ss turbulent viscosity transport term used in simple analytic accretion disc modelling, a pseudo-scalar transport term also arises. The essence of this term can be captured even in simple models for which vertical averaging is interpreted as integration over a half-thickness and each hemisphere is separately studied. The additional term highlights a complementarity between mean field magnetic dynamo theory and accretion disc theory treated as a mean field theory. Such pseudo-scalar terms have been studied, and can lead to large-scale magnetic field and vorticity growth. Here it is shown that vorticity can grow even in the simplest azimuthal and half-height integrated disc model, for which mean quantities depend only on radius. The simplest vorticity growth solutions seem to have scales and vortex survival times consistent with those required for facilitating planet formation. In addition, it is shown that, when the magnetic back-reaction is included to lowest order, the pseudo-scalar driving the magnetic field growth and that driving the vorticity growth will behave differently with respect to shearing and non-shearing flows: the former pseudo‐scalar can more easily reverse sign in the two cases.  相似文献   

16.
17.
We study the torque on low-mass protoplanets on fixed circular orbits, embedded in a protoplanetary disc in the isothermal limit. We consider a wide range of surface density distributions including cases where the surface density increases smoothly outwards. We perform both linear disc response calculations and non-linear numerical simulations. We consider a large range of viscosities, including the inviscid limit, as well as a range of protoplanet mass ratios, with special emphasis on the co-orbital region and the corotation torque acting between disc and protoplanet.
For low-mass protoplanets and large viscosity, the corotation torque behaves as expected from linear theory. However, when the viscosity becomes small enough to enable horseshoe turns to occur, the linear corotation torque exists only temporarily after insertion of a planet into the disc, being replaced by the horseshoe drag first discussed by Ward. This happens after a time that is equal to the horseshoe libration period reduced by a factor amounting to about twice the disc aspect ratio. This torque scales with the radial gradient of specific vorticity, as does the linear torque, but we find it to be many times larger. If the viscosity is large enough for viscous diffusion across the co-orbital region to occur within a libration period, we find that the horseshoe drag may be sustained. If not, the corotation torque saturates leaving only the linear Lindblad torques. As the magnitude of the non-linear co-orbital torque (horseshoe drag) is always found to be larger than the linear torque, we find that the sign of the total torque may change even for mildly positive surface density gradients. In combination with a kinematic viscosity large enough to keep the torque from saturating, strong sustained deviations from linear theory and outward or stalled migration may occur in such cases.  相似文献   

18.
We investigate the properties of circumplanetary discs formed in three-dimensional, self-gravitating radiation hydrodynamical models of gas accretion by protoplanets. We determine disc sizes, scaleheights, and density and temperature profiles for different protoplanet masses, in solar nebulae of differing grain opacities.
We find that the analytical prediction of circumplanetary disc radii in an evacuated gap  ( R Hill/3)  from Quillen & Trilling yields a good estimate for discs formed by high-mass protoplanets. The radial density profiles of the circumplanetary discs may be described by power laws between   r −2  and   r −3/2  . We find no evidence for the ring-like density enhancements that have been found in some previous models of circumplanetary discs. Temperature profiles follow a  ∼ r −7/10  power law regardless of protoplanet mass or nebula grain opacity. The discs invariably have large scaleheights  ( H / r > 0.2)  , making them thick in comparison with their encompassing circumstellar discs, and they show no flaring.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号