首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A Numerical World Ocean General Circulation Model   总被引:2,自引:0,他引:2  
This paper describes a numerical model of the world ocean based on the fully primitive equations. A "Standard" ocean state is introduced into the equations of the model and the perturbed thermodynamic variables are used in the modlc's calculations. Both a free upper surface and a bottom topography are included in the model and a sigma coordinate is used to normalize the model's vertical component. The model has four unevenly-spaced layers and 4 × 5 horizontal resolution based on C-grid system. The finite-difference scheme of the model is designed to conserve the gross available energy in order to avoid fictitious energy generation or decay.The model has been tested in response to the annual mean surface wind stress, sea level air pressure and sea level air temperature as a preliminary step to its further improvement and its coupling with a global atmospheric general circulation model. Some of results, including currents, temperature and sea surface elevation simulated by the mode! arc presented.  相似文献   

2.
Aircraft observations of the atmospheric boundary layer (ABL) over Arctic sea ice were made during non-stationary conditions of cold-air advection with a cloud edge retreating through the study region. The sea-ice concentration, roughness, and ABL stratification varied in space. In the ABL heat budget, 80% of the Eulerian change in time was explained by cold-air advection and 20% by diabatic heating. With the cloud cover and inflow potential temperature profile prescribed as a function of time, the air temperature and near-surface fluxes of heat and momentum were well simulated by the applied two-dimensional mesoscale model. Model sensitivity tests demonstrated that several factors can be active in generating unstable stratification in the ABL over the Arctic sea ice in March. In this case, the upward sensible heat flux resulted from the combined effect of clouds, leads, and cold-air advection. These three factors interacted non-linearly with each other. From the point of view of ABL temperatures, the lead effect was far less important than the cloud effect, which influenced the temperature profiles via cloud-top radiative cooling and radiative heating of the snow surface. The steady-state simulations demonstrated that under overcast skies the evolution towards a deep, well-mixed ABL may take place through the merging of two mixed layers one related to mostly shear-driven surface mixing and the other to buoyancy-driven top-down mixing due to cloud-top radiative cooling.  相似文献   

3.
The Los Alamos sea ice model(CICE) is used to simulate the Arctic sea ice variability from 1948 to 2009. Two versions of CICE are validated through comparison with Hadley Centre Global Sea Ice and Sea Surface Temperature(Had ISST) observations. Version 5.0 of CICE with elastic-viscous-plastic(EVP) dynamics simulates a September Arctic sea ice concentration(SASIC) trend of –0.619 × 1012 m2 per decade from 1969 to 2009, which is very close to the observed trend(-0.585 × 1012 m2 per decade). Version 4.0 of CICE with EVP dynamics underestimates the SASIC trend(-0.470 × 1012 m2 per decade). Version 5.0 has a higher correlation(0.742) with observation than version 4.0(0.653). Both versions of CICE simulate the seasonal cycle of the Arctic sea ice, but version 5.0 outperforms version 4.0 in both phase and amplitude. The timing of the minimum and maximum sea ice coverage occurs a little earlier(phase advancing) in both versions. Simulations also show that the September Arctic sea ice volume(SASIV) has a faster decreasing trend than SASIC.  相似文献   

4.
Abstract

A study is presented of the seasonal and interannual variability of Arctic sea‐ice extent over the 32‐year period 1953–84. The data set used consists of monthly sea‐ice concentration values given on a 1°‐latitude grid and represents a 7‐year extension of the 25‐year data set analysed by Walsh and Johnson (1979). By focussing attention on the variability in seven distinct subregions that circumscribe the polar region, a number of interesting spatial patterns emerge in the regional seasonal cycles and anomalies of ice coverage. For example, the time‐scale of the smoothed anomaly fluctuations varies from a 4–6 year cycle in the western Arctic (e.g. the Beaufort Sea) to a decadal one in the eastern Arctic (e.g. the Barents Sea). Also, in agreement with earlier studies, a significant out‐of‐phase relationship was found between the 25‐month smoothed anomalies in the Beaufort and Chukchi Sea region and the Greenland Sea. It is proposed that this behaviour is related to atmospheric pressure anomalies associated with the see‐saw in winter air temperature between northern Europe and western Greenland. Finally, a particularly large 9‐year ice anomaly in the Greenland Sea that was centred on 1968 appears to have evolved into a substantial 4‐year Labrador Sea anomaly that peaked in 1972. Both of these anomalies coincided with the passage of the “ Great Salinity Anomaly”, which traversed cyclonically around the subpolar gyre in the northern North Atlantic during the period 1968–82.  相似文献   

5.
Numerical models of trajectories of small aerosol spheres relative to oblate spheroids were used to determine ice crystal scavenging efficiencies. The models included the effects of aerodynamic flow about the ice particle, gravity, aerosol particle inertia and drag and electrostatic effects. Two electric configurations of the ice particle were investigated in detail. The first applied a net charge to the ice particle, of magnitude equal to the mean thunderstorm charge distribution, while the second applied a charge distribution, with no net charge, to the ice particle to model the electric multipole charge distribution. The results show that growing ice crystals with electric multipoles are better scavengers than single ice crystals with net thunderstorm charges, especially in the Greenfield gap (0.1 to 1.0 um), and that larger single crystals are better scavengers than smaller single crystals. The results also show that the low density ice crystals are more effective scavengers with net charges than th  相似文献   

6.
A new hybrid coupled model(HCM) is presented in this study, which consists of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model. The ocean component is the intermediate ocean model(IOM)of the intermediate coupled model(ICM) used at the Institute of Oceanology, Chinese Academy of Sciences(IOCAS). The atmospheric component is ECHAM5, the fifth version of the Max Planck Institute for Meteorology atmospheric general circulation model. The HCM integrates its atmospheric and oceanic components by using an anomaly coupling strategy. A100-year simulation has been made with the HCM and its simulation skills are evaluated, including the interannual variability of SST over the tropical Pacific and the ENSO-related responses of the global atmosphere. The model shows irregular occurrence of ENSO events with a spectral range between two and five years. The amplitude and lifetime of ENSO events and the annual phase-locking of SST anomalies are also reproduced realistically. Despite the slightly stronger variance of SST anomalies over the central Pacific than observed in the HCM, the patterns of atmospheric anomalies related to ENSO,such as sea level pressure, temperature and precipitation, are in broad agreement with observations. Therefore, this model can not only simulate the ENSO variability, but also reproduce the global atmospheric variability associated with ENSO, thereby providing a useful modeling tool for ENSO studies. Further model applications of ENSO modulations by ocean–atmosphere processes, and of ENSO-related climate prediction, are also discussed.  相似文献   

7.
Russian Meteorology and Hydrology - A method for the assimilation of data on sea ice concentration in the NEMO—LIM3 multicategory sea ice model is presented for application in the operational...  相似文献   

8.
《高原气象》2012,31(1)
将海洋飞沫参数化引入到高分辨率、非静力中尺度模式中,并对0908号台风"Morakot"进行了数值模拟,研究了海洋飞沫对台风"Morakot"结构和强度的影响。结果表明:(1)不论是否考虑海洋飞沫作用,模式均能较好地模拟出台风"Morakot"的移动路径,说明海洋飞沫对其移动路径影响不大;(2)引入海洋飞沫参数化后,台风眼墙区域的切向风速、径向风速、垂直速度、涡度、云水混合比、雨水混合比等物理量均增强,表明飞沫对台风结构变化的影响明显;(3)海洋飞沫对台风"Morakot"演变的直接影响是在对流层低层,低层风速明显增大,大风速区的影响尤为显著;(4)飞沫的蒸发使台风范围内的潜热和感热通量明显增强,尤其是潜热通量,其大值区对应着台风中心附近的最大风速区。由于水汽和热量输送的增强,使台风眼壁附近的云水量与雨水量增多,因此降水强度明显增加。  相似文献   

9.
On the basis of Zeng’s theoretical design, a coupled general circulation model (CGCM) is developed with its characteristics different from other CGCMs such as the unified vertical coordinates and subtraction of the standard stratification for both atmosphere and ocean, available energy consideration, and so on. The oceanic component is a free surface tropical Pacific Ocean GCM between 30oN and 30oS with horizontal grid spacing of 1o in latitude and 2o in longitude, and with 14 vertical layers. The atmospheric component it a global GCM with low-resolution of 4o in latitude and 5o in longitude, and two layers or equal man in the vertical between the surface and 200 hPa. The atmospheric GCM includes comprehensive physical processes. The coupled model is subjected to seasonally-varying cycle. Several coupling experiments, ranging from straight forward coupling without flux correction to one with flux correction, and to so-called predictor-corrector monthly coupling (PCMC), are conducted to show the existence and final controlling of the climate drift in the coupled system. After removing the climate drift with the PCMC scheme, the coupled model is integrated for more than twenty years. The results show reasonable simulations of the annual mean and its seasonal cycle of the atmospheric and oceanic circulation. The model also produces the coherent interannual variations of the climate system, manifesting the observed El Ni?o / Southern Oscillation (ENSO).  相似文献   

10.
The present study focuses on the impact of ocean state (i.e., salinity and temperature) updates on the sea-ice analysis and short-term forecast in an assimilative sea ice–ocean coupled system. A relatively simple sea-ice assimilation scheme was applied to the sea ice–ocean coupled North Atlantic Nucleus for European Modelling of the Ocean (NEMO) system with a focus on the Canadian East Coast. In this assimilation scheme the ocean state was updated directly based on the correlations between the model's sea-ice concentration and the upper ocean salinity and temperature. These correlations were based on a limited time ensemble generated by applying random perturbations to the atmospheric forcing fields. High deviations in the sea-ice conditions were found along the ice edge, implying that the sea-ice edge position is sensitive to small atmospheric forcing variations. Assimilation runs with and without ocean state updates (i.e., sea-ice concentration nudging) were conducted and compared for the winter of 2002. Both continuous and intermittent assimilation schemes were examined. In a continuous sea-ice assimilation experiment, the ocean direct update is unnecessary. When the sea-ice updates are introduced intermittently the ocean state has to be altered to accommodate them, or they will be rapidly diminished by the model's dynamics. The correlations between sea-ice concentration and ocean salinity and temperature based on the first 15 days of January were used for corrections during the entire winter season when, in addition to thermodynamic processes, dynamic processes are responsible for, and even dominate, sea-ice evolution on the Labrador and Newfoundland shelves. This was an adequate choice as was demonstrated by the results of the study which showed that the experiments with ocean state adjustments generated more accurate short-term sea-ice forecasts.  相似文献   

11.
The problem of error propagation is considered for spatially uncorrelated errors of the barotropic stream function in an oceanic general circulation model (OGCM). Such errors typically occur when altimetric data from satellites are assimilated into ocean models. It is shown that the error decays at first due to the dissipation of the smallest scales in the error field. The error then grows exponentially before it saturates at the value corresponding to the difference between independent realizations. A simple analytic formula for the error behavior is derived; it matches the numerical results documented for the present primitive-equation ocean model, and other models in the literature.  相似文献   

12.
Recent satellite data analysis has provided improved data sets relevant to the surface energy budget in the Arctic Ocean. In this paper, surface radiation properties in the Arctic Ocean obtained from the Surface Radiation Budget(SRB3.0) and the International Satellite Cloud Climatology Project(ISCCP-FD) during 1984– 2007 are analyzed and compared. Our analysis suggests that these datasets show encouraging agreement in basin-wide averaged seasonal cycle and spatial distribution of surface albedo; net surface shortwave and all-wave radiative fluxes; and shortwave, longwave, and all-wave cloud radiative forcings. However, a systematic large discrepancy is detected for the net surface longwave radiative flux between the two data sets at a magnitude of ~ 23 W m–2, which is primarily attributed to significant differences in surface temperature, particularly from April to June. Moreover, the largest difference in surface shortwave and all-wave cloud radiative forcings between the two data sets is apparent in early June at a magnitude of 30 W m–2.  相似文献   

13.
宁夏春季沙尘暴与北极海冰之间的遥相关关系   总被引:11,自引:3,他引:11  
根据宁夏沙尘暴发生次数资料、北极海冰密集度资料和NCEP/NCAR再分析500hPa、850hPa高度场、风场资料,得出了宁夏春季沙尘暴发生次数的变化规律及其与北极海冰面积之间的年代际和年际相关关系,发现宁夏春季沙尘暴发生次数与欧亚大陆北部的喀拉海、巴伦支海和格陵兰海冰面积之间存在较显著的年代际、年际相关关系。通过合成和相关分析知,宁夏春季沙尘暴偏多、偏少状况有明显不同的环流背景场,秋季格陵兰海冰异常变化通过影响其后一段时间的大气环流背景场,从而对宁夏沙尘暴产生影响。初步得出当格陵兰海秋季海冰面积增大(减小),次年春季蒙古至西伯利亚一带500hPa、850hPa高压场降低(升高),风场有明显的气旋性(反气旋性)特点,在宁夏至新疆一带西风明显偏强(偏弱),说明冷空气活动次数偏多(少),对应宁夏春季沙尘暴发生次数偏多(少)。通过海冰将全球气候变暖和宁夏(我国北方)沙尘暴总减少趋势联系起来,初次提出在环境总体恶化情况下,我国沙尘暴发生次数总体趋于减少,很可能是全球气候变暖所致。  相似文献   

14.
In this study,the authors analyzed the associations between the Arctic Oscillation(AO)and the tropical Indian Ocean(TIO)intertropical convergence zone(ITCZ)in boreal winter for the period 1979–2009.A statistically significant AO-TIO ITCZ linkage was found.The ITCZ vertical air motion is significantly associated with the AO,with upward(downward)air motion corresponding to the positive(negative)AO phase.The Arabian Sea anticyclone plays a crucial role in linking the AO and the TIO ITCZ.The Arabian Sea vorticity is strongly linked to high-latitude disturbances in conjunction with jet stream waveguide effects of disturbance trapping and energy dispersion.During positive(negative)AO years,the Arabian Sea anticyclone tends to be stronger(weaker).The mean vorticity over the Arabian Sea,averaged from 850hPa to 200 hPa,has a significant negative correlation with AO(r=0.63).The anomalous anticyclone over the Arabian Sea brings stronger northeastern winds,which enhance the ITCZ after crossing the equator and result in greater-than-normal precipitation and minimum outgoing long-wave radiation.  相似文献   

15.
A reformulation of the simple model of the thermally and wind-driven ocean circulation introduced by Maas [Tellus 46A (1994) 671] is considered. Under a realistic range of forcing parameters, this model displays multiple attractors, corresponding to thermally direct and indirect circulations. The fixed point associated with the thermally direct circulation is unstable for a broad range of parameters, leading to limit cycles and chaotic behaviour. It is demonstrated that if weather variability is parameterised as stochastic perturbations to the mechanical and buoyancy fluxes, then the leading Lyapunov exponent of the circulation can become positive for sufficiently strong fluctuations in parameter ranges where it is deterministically zero. If the fluctuations are sufficiently small that the stochastic trajectories are not too far from the deterministic attractor, it is demonstrated that the sign of the leading Lyapunov exponent can have a substantial effect on the predictability of the system.  相似文献   

16.
北极海冰的气候变化与20世纪90年代的突变   总被引:5,自引:0,他引:5  
应用英国Had ley气候研究中心1968~2000年的1°×1°的北半球逐月海冰密集度资料,使用EOF分解等统计方法,探讨北极海冰的气候变化趋势、海冰的突变、海冰的季节持续性和各季的特色。结果表明:(1)自1968年以来,北极海冰的减小是北半球海冰变化的总趋势;海冰的趋势变化在海冰的年际总变化中占有相当重要的地位,可达50%左右。冬春季主要减少区域在格陵兰海、巴伦支海和白令海;夏秋季海冰减少是唯一趋势,中心在北冰洋边缘的喀拉海、拉普捷夫海、东西伯利亚海、楚科奇海、波弗特海。(2)20世纪80年代中后期北极海冰已出现减小趋势,在20世纪90年代,海冰又出现范围和面积的突然减少,中心在格陵兰海和巴伦支海;即海冰减少是加速的,其变化程度已远远超过一般的自然变化。(3)海冰有很好的季节持续性,有很强的隔季相关,也有较好的隔年相关;各季节海冰分布型之间有很好的联系,表现为海冰分布型的总体变化趋势是一致的,在海冰的减少中也体现了分布型的特征。  相似文献   

17.
Irregular centennial oscillations, with a spectral peak at 106 years, were obtained from an ocean-ice coupled model for the North Atlantic with realistic coastline and bottom topography. The model’s thermohaline circulation is forced by mixed boundary conditions, i.e., a Haney-type relaxation condition for temperature, but an equivalent virtual salt flux condition for salinity. All forcing fields are taken from the observed monthly mean climatological wind stress and buoyancy fluxes. The oscillations appeared in the form of a surface-intensified tripole in both the sea surface temperature and salinity fields located in the vicinity of the Labrador Sea. The oscillations involve a delicate interplay between heat and fresh water advection by meridional overturning circulation, horizontal gyres, vertical convection, and the seasonal cycle. The oscillations are primarily control?led by the salinity component of the circulation; however, sea ice plays a minor role in driving the oscillations observed in the model. On the other hand, a regular seasonal cycle in the forcing fields is an important ingredient for the centennial oscillations.  相似文献   

18.
A new generation of the IAP / LASG world ocean general circulation model is designed and presented based on the previous 20-layer model, with enhanced spatial resolutions and improved parameterizations. The model uses a triangular-truncated spectral horizontal grid system with its zonal wave number of 63 (T63) to match its atmospheric counterpart of a T63 spectral atmosphere general circulation model in a planned coupled ocean-atmosphere system. There are 30 layers in vertical direction, of which 20 layers are located above 1000 m for better depicting the permanent thermocline. As previous ocean models developed in IAP / LASG, a free surface (rather than “rigid-lid” approximation) is included in this model. Compared with the 20-layer model, some more detailed physical parameterizations are considered, including the along / cross isopycnal mixing scheme adapted from the Gent-MacWilliams scheme. The model is spun up from a motionless state. Initial conditions for temperature and salinity are taken from the three-dimensional distributions of Levitus’ annual mean observation. A preliminary analysis of the first 1000-year integration of a control experiment shows some encouraging improvements compared with the twenty-layer model, particularly in the simulations of permanent thermocline, thermohaline circu?lation, meridional heat transport, etc. resulted mainly from using the isopycnal mixing scheme. However, the use of isopycnal mixing scheme does not significantly improve the simulated equatorial thermocline. A series of numerical experiments show that the most important contribution to the improvement of equatori?al thermocline and the associated equatorial under current comes from reducing horizontal viscosity in the equatorial regions. It is found that reducing the horizontal viscosity in the equatorial Atlantic Ocean may slightly weaken the overturning rate of North Atlantic Deep Water.  相似文献   

19.
北冰洋地区海浪的生成和发展会受到海冰范围变化的显著影响.本文介绍了近年来基于浮标、潜标和走航观测,以及卫星遥感和数值模拟等方法开展的不同海冰覆盖度下北冰洋海浪的研究进展,包括海冰覆盖区海浪的传播机制等.北冰洋夏季开阔海域的平均有效波高可达3 m,在风暴期间,波弗特海有效波高可达5 m.除大西洋一侧,夏季北冰洋大部分海域...  相似文献   

20.
武炳义  杨琨 《气象学报》2016,74(5):683-696
利用美国NCEP/NCAR、欧洲中心ERA-Interim再分析资料,以及英国哈得来中心海冰密集度资料,通过诊断分析和数值模拟试验,研究了2011/2012和2015/2016年两个冬季大气环流异常的主要特征和可能原因。结果表明,尽管热带太平洋海温背景截然不同(分别为弱的拉尼娜事件和强厄尔尼诺事件),但这两个冬季西伯利亚高压均异常偏强,自1979年以来其强度分别排第1和第5位。前期秋季北极海冰异常偏少是导致这两个冬季西伯利亚高压偏强的主要原因。更为重要的是,前期夏季北冰洋表面反气旋风场,以及其上空对流层中、低层平均气温偏高,加强了北极海冰偏少对冬季大气变率的负反馈,进一步促进了西伯利亚高压的加强,从而有利于东亚地区冬季阶段性强严寒的出现。因此,夏季北极大气环流的动力和热力状态不仅影响夏、秋季北极海冰,而且对海冰偏少影响亚洲冬季气候变率有重要调节作用。2015/2016年冬季强厄尔尼诺事件并不能掩盖来自北极海冰和大气环流的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号