首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The famous neutron star Geminga was until quite lately the only pulsar undetected in the radio regime, though observed as a strong pulsating γ- and X-ray source. Three independent groups from the Pushchino Radio Astronomy Observatory (Russia) reported recently the detection of pulsed radio emission from Geminga at 102.5 MHz, i.e., the first detection of the radio pulsar PSR J0633 + 1746 by Kuz'min &38; Losovskii, Malofeev &38; Malov and Shitov &38; Pugachev. This pulsar exhibits the weakest radio luminosity known. Its average pulse profile appears to be very wide, filling an entire 360° pulse window according to Kuz'min &38; Losovskii.   We present a model explaining the peculiarities of the Geminga radio pulsar, based on the assumption that it is an almost aligned rotator. The electromagnetic waves generated in the inner magnetosphere reach the region within the light cylinder with a weak magnetic field (at distances of a few light cylinder radii), where they are strongly damped due to the cyclotron resonance with particles of magnetospheric electron–positron plasma. The lowest frequencies that can escape are determined by the value of the magnetic field in the region where the line of sight passes through the light cylinder. The specific viewing geometry of an almost aligned rotator implies that the observer's line of sight probes the emission region near the bundle of the last open field lines. This explains the unusually weak emission from Geminga's low-frequency radio pulsar.  相似文献   

2.
Atmospheres and spectra of strongly magnetized neutron stars   总被引:1,自引:0,他引:1  
We construct atmosphere models for strongly magnetized neutron stars with surface fields     and effective temperatures     . The atmospheres directly determine the characteristics of thermal emission from isolated neutron stars, including radio pulsars, soft gamma-ray repeaters, and anomalous X-ray pulsars. In our models, the atmosphere is composed of pure hydrogen or helium and is assumed to be fully ionized. The radiative opacities include free–free absorption and scattering by both electrons and ions computed for the two photon polarization modes in the magnetized electron–ion plasma. Since the radiation emerges from deep layers in the atmosphere with     , plasma effects can significantly modify the photon opacities by changing the properties of the polarization modes. In the case where the magnetic field and the surface normal are parallel, we solve the full, angle-dependent, coupled radiative transfer equations for both polarization modes. We also construct atmosphere models for general field orientations based on the diffusion approximation of the transport equations and compare the results with models based on full radiative transport. In general, the emergent thermal radiation exhibits significant deviation from blackbody, with harder spectra at high energies. The spectra also show a broad feature     around the ion cyclotron resonance     , where Z and A are the atomic charge and atomic mass of the ion, respectively; this feature is particularly pronounced when     . Detection of the resonance feature would provide a direct measurement of the surface magnetic fields on magnetars.  相似文献   

3.
We find numerical solutions of the coupled system of Einstein–Maxwell equations with a linear approach, in which the magnetic field acts as a perturbation of a spherical neutron star. In our study, magnetic fields having both poloidal and toroidal components are considered, and higher order multipoles are also included. We evaluate the deformations induced by different field configurations, paying special attention to those for which the star has a prolate shape. We also explore the dependence of the stellar deformation on the particular choice of the equation of state and on the mass of the star. Our results show that, for neutron stars with mass   M = 1.4 M  and surface magnetic fields of the order of 1015 G, a quadrupole ellipticity of the order of 10−6 to 10−5 should be expected. Low-mass neutron stars are in principle subject to larger deformations (quadrupole ellipticities up to 10−3 in the most extreme case). The effect of quadrupolar magnetic fields is comparable to that of dipolar components. A magnetic field permeating the whole star is normally needed to obtain negative quadrupole ellipticities, while fields confined to the crust typically produce positive quadrupole ellipticities.  相似文献   

4.
Emission spectra from magnetars in the soft X-ray band likely contain a thermal component emerging directly from the neutron star (NS) surface. However, the lack of observed absorption-like features in quiescent spectra makes it difficult to directly constrain physical properties of the atmosphere. We argue that future X-ray polarization measurements represent a promising technique for directly constraining the magnetar magnetic field strength and geometry. We construct models of the observed polarization signal from a finite surface hotspot, using the latest NS atmosphere models for magnetic fields   B = 4 × 1013–5 × 1014 G  . Our calculations are strongly dependent on the NS magnetic field strength and geometry, and are more weakly dependent on the NS equation of state and atmosphere composition. We discuss how the complementary dependencies of phase-resolved spectroscopy and polarimetry might resolve degeneracies that currently hamper the determination of magnetar physical parameters using thermal models.  相似文献   

5.
We investigate equilibrium sequences of magnetized rotating stars with four kinds of realistic equations of state (EOSs) of SLy, FPS, Shen and LS, employing the Tomimura–Eriguchi scheme to construct the equilibrium configurations. We study the basic physical properties of the sequences in the framework of Newtonian gravity. In addition, we take a new step by taking into account a general relativistic effect to the magnetized rotating configurations. With these computations, we find that the properties of the Newtonian magnetized stars, e.g. structure of magnetic field, highly depends on the EOSs. The toroidal magnetic fields concentrate rather near the surface for Shen and LS EOSs than those for SLy and FPS EOSs. The poloidal fields are also affected by the toroidal configurations. Paying attention to the stiffness of the EOSs, we analyse this tendency in detail. In the general relativistic stars, we find that the difference due to the EOSs becomes small because all the employed EOSs become sufficiently stiff for the large maximum density, typically greater than  1015 g cm−3  . The maximum baryon mass of the magnetized stars with axis ratio   q ∼ 0.7  increases about up to 20 per cent for that of spherical stars. We furthermore compute equilibrium sequences at finite temperature, which should serve as an initial condition for the hydrodynamic study of newly born magnetars. Our results suggest that we may obtain information about the EOSs from the observation of the masses of magnetars.  相似文献   

6.
We have developed a new numerical scheme for obtaining structures of rapidly rotating stars with strong magnetic fields. In our scheme, both poloidal and toroidal magnetic fields can be treated for stars with compressibility and infinite conductivity. By introducing the vector potential and its integral representation, we can treat the boundary condition for the magnetic fields across the surface properly. We show structures and distributions of magnetic fields as well as the distributions of the currents of rotating magnetic polytropic stars with polytropic index   N = 1.5  . The shapes of magnetic stars are oblate as long as the magnetic vector potential decreases as 1/ r when   r →∞  . For extremely strong magnetic fields, equilibrium configurations can be of toroidal shapes.  相似文献   

7.
We obtained self-similar solutions of relativistically expanding magnetic loops taking into account the azimuthal magnetic fields. We neglect stellar rotation and assume axisymmetry and a purely radial flow. As the magnetic loops expand, the initial dipole magnetic field is stretched into the radial direction. When the expansion speed approaches the light speed, the displacement current reduces the toroidal current and modifies the distribution of the plasma lifted up from the central star. Since these self-similar solutions describe the free expansion of the magnetic loops, i.e.  d v /d t = 0  , the equations of motion are similar to those of the static relativistic magnetohydrodynamics. This allows us to estimate the total energy stored in the magnetic loops by applying the virial theorem. This energy is comparable to that of the giant flares observed in magnetars.  相似文献   

8.
We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the one-dimensional flow along each, subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations numerically for a large ensemble of field lines to build up a three-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star σ Ori E. Since the flow along each field line can be solved independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment.
The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disc defined by the locus of minima of the effective (gravitational plus centrifugal) potential. However, a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to  ∼3000 km s−1  ) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disc can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.  相似文献   

9.
Strong magnetic fields in relativistic stars can be a cause of crust fracturing, resulting in the excitation of global torsional oscillations. Such oscillations could become observable in gravitational waves or in high-energy radiation, thus becoming a tool for probing the equation of state of relativistic stars. As the eigenfrequency of torsional oscillation modes is affected by the presence of a strong magnetic field, we study torsional modes in magnetized relativistic stars. We derive the linearized perturbation equations that govern torsional oscillations coupled to the oscillations of a magnetic field, when variations in the metric are neglected (Cowling approximation). The oscillations are described by a single two-dimensional wave equation, which can be solved as a boundary-value problem to obtain eigenfrequencies. We find that, in the non-magnetized case, typical oscillation periods of the fundamental     torsional modes can be nearly a factor of 2 larger for relativistic stars than previously computed in the Newtonian limit. For magnetized stars, we show that the influence of the magnetic field is highly dependent on the assumed magnetic field configuration, and simple estimates obtained previously in the literature cannot be used for identifying normal modes observationally.  相似文献   

10.
We present a detailed, extensive investigation of the photometric and spectroscopic behaviour of WR 30a. This star is definitely a binary system with a period around 4.6 d. We propose the value         . The identification of the components as WO4+O5((f)) indicates a massive evolved binary system; the O5 component is a main-sequence or, more likely, a giant star. The radial velocities of the O star yield a circular orbit with an amplitude         and a mass function of 0.013     . The spectrum of WR 30a exhibits strong profile variations of the broad emission lines that are phase-locked with the orbital period. We report the detection of the orbital motion of the WO component with     , but this should be confirmed by further observations. If correct, it implies a mass ratio     . The star exhibits sinusoidal light variations of amplitude 0.024 mag peak-to-peak with the minimum of light occurring slightly after the conjunction with the O star in front. On the basis of the phase-locked profile variations of the C  iv λ 4658 blend in the spectrum of the WO, we conclude that a wind–wind collision phenomenon is present in the system. We discuss some possibilities for the geometry of the interaction region.  相似文献   

11.
We consider the evolution of magnetic fields under the influence of Hall drift and Ohmic decay. The governing equation is solved numerically, in a spherical shell with   r i / r o = 0.75  . Starting with simple free-decay modes as initial conditions, we then consider the subsequent evolution. The Hall effect induces so-called helicoidal oscillations, in which energy is redistributed among the different modes. We find that the amplitude of these oscillations can be quite substantial, with some of the higher harmonics becoming comparable with the original field. Nevertheless, this transfer of energy to the higher harmonics is not sufficient to accelerate significantly the decay of the original field, at least not at the   R B = O (100)  parameter values accessible to us, where this Hall parameter   R B   measures the ratio of the Ohmic time-scale to the Hall time-scale. We do find clear evidence though of increasingly fine structures developing for increasingly large   R B   , suggesting that perhaps this Hall-induced cascade to ever-shorter length-scales is eventually sufficiently vigorous to enhance the decay of the original field. Finally, the implications for the evolution of neutron star magnetic fields are discussed.  相似文献   

12.
We present the first light curves of V505 Sgr in the infrared (IR) J and K bands. The light curves are analysed with a code based on Roche geometry and stellar model atmosphere fluxes in order to determine a new set of stellar and orbital parameters. From the visual–IR photometry we find no evidence of IR excess in the system. We study the effect of the non-synchronous rotation of the primary star in the light and radial velocity curves. The distance of the system is estimated as  112 ± 4 pc  , in close agreement with the Hipparcos parallax.  相似文献   

13.
The axial modes for non-barotropic relativistic rotating neutron stars with uniform angular velocity are studied, using the slow-rotation formalism together with the low-frequency approximation, first investigated by Kojima. The time-independent form of the equations leads to a singular eigenvalue problem, which admits a continuous spectrum. We show that for     , it is nevertheless also possible to find discrete mode solutions (the r modes). However, under certain conditions related to the equation of state and the compactness of the stellar model, the eigenfrequency lies inside the continuous band and the associated velocity perturbation is divergent; hence these solutions have to be discarded as being unphysical. We corroborate our results by explicitly integrating the time-dependent equations. For stellar models admitting a physical r-mode solution, it can indeed be excited by arbitrary initial data. For models admitting only an unphysical mode solution, the evolutions do not show any tendency to oscillate with the respective frequency. For higher values of l it seems that in certain cases there are no mode solutions at all.  相似文献   

14.
We present a model for the differential rotation and dynamo activity of the young rapidly rotating K0 dwarf LQ Hya ( P rot=1.6 d). As might be expected from observations of the similar rapid rotator AB Dor, the predicted differential rotation is small (≃0.8 per cent) but extremely efficient in generating magnetic fields. The dynamo, which is of a distributed type, produces a globally axisymmetric field with radial and azimuthal components that are of the same magnitude and display a phase-lag in their evolution of about π/2. This is consistent with the long-term Zeeman–Doppler imaging study by Donati. The latitudinal distribution of flux is, however, a little different from that observed and the cycle period of 3.2 yr is somewhat shorter than suggested by the observations.  相似文献   

15.
We argue that the first stars may have spanned the conventional mass range rather than be identified with the very massive objects  (∼100–103 M)  favoured by numerical simulations. Specifically, we find that magnetic field generation processes acting in the first protostellar systems suffice to produce fields that exceed the threshold for magneto-rotational instability (MRI) to operate, and thereby allow the MRI dynamo to generate equipartition-amplitude magnetic fields on protostellar mass scales below  ∼50 M  . Such fields allow primordial star formation to occur at essentially any metallicity by regulating angular momentum transfer, fragmentation, accretion and feedback in much the same way as occurs in conventional molecular clouds.  相似文献   

16.
Recent ROSAT measurements show that the X-ray emission from isolated neutron stars is modulated at the stellar rotation period. To interpret these measurements, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We present nearly analytic models of the thermal structure of the envelopes of ultramagnetized neutron stars. Specifically, we examine the limit in which only the ground Landau level is filled. We use the models to estimate the amplitude of modulation expected from non-uniformities in the surface temperatures of strongly magnetized neutron stars. In addition, we estimate cooling rates for stars with fields B  ∼ 1015 − 1016 G, which are relevant to models that invoke 'magnetars' to account for soft γ-ray emission from some repeating sources.  相似文献   

17.
We consider the magnetic and spin evolution of the X-ray binary pulsars Her X-1 and 4U 1626–67, assuming that their magnetic fields are of crustal origin. We adopt the standard evolutionary model which implies that the neutron star passes through several phases in a binary system ('isolated pulsar' – propeller – wind accretion – Roche lobe overflow). In the framework of the model under consideration, the strong magnetic fields of relatively old pulsars like Her X-1 and 4U 1626–67 can naturally be understood if, at their birth, they had a sufficiently strong magnetic field, ∼3 × 1013 G, comparable to the maximal field observed in radio pulsars.  相似文献   

18.
RX J1856.5−3754 is one of the brightest, nearby isolated neutron stars (NSs), and considerable observational resources have been devoted to its study. In previous work, we found that our latest models of a magnetic, hydrogen atmosphere match well the entire spectrum, from X-rays to optical (with best-fitting NS radius   R ≈ 14  km, gravitational redshift   z g∼ 0.2  , and magnetic field   B ≈ 4 × 1012  G). A remaining puzzle is the non-detection of rotational modulation of the X-ray emission, despite extensive searches. The situation changed recently with XMM–Newton observations that uncovered 7-s pulsations at the     level. By comparing the predictions of our model (which includes simple dipolar-like surface distributions of magnetic field and temperature) with the observed brightness variations, we are able to constrain the geometry of RX J1856.5−3754, with one angle <6° and the other angle     , though the solutions are not definitive, given the observational and model uncertainties. These angles indicate a close alignment between the rotation and the magnetic axes or between the rotation axis and the observer. We discuss our results in the context of RX J1856.5−3754 being a normal radio pulsar and a candidate for observation by future X-ray polarization missions such as Constellation-X or XEUS .  相似文献   

19.
We present the results of high-resolution (1–0.4 Å) optical spectroscopy of a sample of very low-mass stars. These data are used to examine the kinematics of the stars at the bottom of the hydrogen-burning main sequence. No evidence is found for a significant difference between the kinematics of the stars in our sample with I  −  K  > 3.5 ( M bol ≳ 12.8) and those of more massive M dwarfs ( M bol ≈ 7–10). A spectral atlas at high (0.4-Å) resolution for M8–M9+ stars is provided, and the equivalent widths of Cs  I , Rb  I and Hα lines present in our spectra are examined. We analyse our data to search for the presence of rapid rotation, and find that the brown dwarf LP 944-20 is a member of the class of 'inactive, rapid rotators'. Such objects seem to be common at and below the hydrogen-burning main sequence. It seems that in low-mass/low-temperature dwarf objects either the mechanism that heats the chromosphere, or the mechanism that generates magnetic fields, is greatly suppressed.  相似文献   

20.
Cool stars at giant and supergiant evolutionary phases present low-velocity and high-density winds, responsible for the observed high mass-loss rates. Although presenting high luminosities, radiation pressure on dust particles is not sufficient to explain the wind acceleration process. Among the possible solutions to this still unsolved problem, Alfvén waves are, probably, the most interesting for their high efficiency in transfering energy and momentum to the wind. Typically, models of Alfvén wave driven winds result in high-velocity winds if they are not highly damped. In this work, we determine self-consistently the magnetic field geometry and solve the momentum, energy and mass conservation equations, to demonstrate that even a low-damped Alfvén wave flux is able to reproduce the low-velocity wind. We show that the magnetic flux tubes expand with a super-radial factor of S > 30 near the stellar surface, larger than that used in previous semi-empirical models. The rapid expansion results in a strong spatial dilution of the wave flux. We obtained the wind parameter profiles for a typical supergiant star of  16 M  . The wind is accelerated in a narrow region, coincident with the region of high divergence of the magnetic field lines, up to 100 km s−1. For the temperature, we obtained a slight decrease near the surface for low-damped waves, because the wave heating mechanism is less effective than the radiative losses. The peak temperature occurs at   r ≃ 1.5  r 0  reaching 6000 K. Propagating outwards, the wind cools down mainly due to adiabatic expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号