首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The problem of simulating quasi-biennial oscillations (QBOs) of zonal velocity in the equatorial stratosphere in atmospheric general circulation models is considered. In accordance with the results from Part I of this study on the basis of the models developed at the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS), the possibility of implementing (in these models) mechanisms of QBO excitation through both the interaction of planetary waves with the mean flow and breaking of short gravity waves is investigated. A new high-resolution 2° × 2.5° × 80 version of the INM RAS model is designed, a climate simulation with the two 2° × 2.5° × 39 and 2° × 2.5° × 80 versions of the INM RAS model is briefly described, results of spectral analysis of equatorial wave activity are presented, and the QBO formation processes in these models are considered in detail. For the new 2° × 2.5° × 80 model, realistic QBOs of zonal wind are obtained as the result of the action of both mechanisms.  相似文献   

2.
The paper focuses on the simulation of the quasi-biennial oscillations (QBOs) of zonal velocity in the equatorial stratosphere. Low-parameter models are used to examine two mechanisms for excitation of the QBO: one through the interaction of planetary waves with the mean flow at critical levels and another through gravity-wave obliteration. The possible use of each of these mechanisms for generating the QBO is shown, the ranges of parameter values where this generation is possible are determined, and the dependences of the period and amplitude of the limit cycle on the model parameters are analyzed. A relative role of waves of different scales in the formation of the period of the oscillations of zonal wind is studied with a coupled model combining both mechanisms. The conditions that are required to reproduce the QBO in general circulation models are discussed.  相似文献   

3.
According to the Holton-Tan hypothesis [1], oscillations of the equatorial stratospheric wind change the conditions of the vertical and meridional propagation of planetary waves in extratropical regions, which can cause quasi-biennial oscillations (QBOs) at middle and polar latitudes. To verify the Holton-Tan hypothesis, the intensity of the winter wave activity of the atmosphere in the Northern Hemisphere was estimated at different phases of the quasi-biennial oscillation of the equatorial stratospheric zonal wind. As it turned out, a higher level of the wave activity expected at the easterly phase of the equatorial QBO is characteristic only of the period when the winter circulation is established. At the end of winter a higher level of the wave activity is observed at the westerly QBO phase, which contradicts the Holton-Tan hypothesis. Small but nevertheless noticeable distinctions in the wave activity at low tropospheric levels suggest that the quasi-biennial periodicity of the wave activity at middle latitudes can be caused by oscillations of synoptic processes between the predominantly zonal and meridional forms of the circulation, as was indicated by Pogosyan and Pavlovskaya [2, 3].  相似文献   

4.
The distributions of kinetic energy (KE) and available potential energy (APE) in the lower and middle atmosphere of the Northern and Southern hemispheres over the period 1992–2003 are investigated. Annual mean values of the amplitude and phase of annual and semiannual oscillations in the zonal and eddy forms of KE and APE are calculated in the height range 0–55 km (1000–0.316 hPa) for the 21st layer. A clearly pronounced annual cycle of the zonal and eddy components of KE and APE with maxima in the winter season are observed in the troposphere of both hemispheres. In the lower stratosphere, the annual-cycle maximum is shifted toward the summer season because of the meridional gradient of the zonal mean temperature. In the stratosphere of both hemispheres, along with annual oscillations, semiannual oscillations are present in all forms of energy. The intensity of these oscillations for the zonal KE and APE at the upper-stratosphere heights is comparable to the intensity of annual oscillations. A local structure of the energy regime of the upper mesosphere-lower thermosphere is investigated against the background of the global energy regime from the data of meteor sounding in Kazan. It is shown that, for both the global and regional regimes, specific features of the phase profiles of energy characteristics can be explained by the presence of barriers during the propagation of wave disturbances along the vertical.  相似文献   

5.
The Black Sea shelf is a region of intense manifestation of various dynamical processes. Under the influence of different natural forces, eddy-wave phenomena develop here, which influence the general circulation of sea waters, biological productivity, and the condition of the engineering structures. Modern numerical models allow us to simulate and analyze the processes of the joint dynamics of marine circulation and large-scale waves. In this work, we study the spatiotemporal spectral characteristics of the sea level and velocity fluctuations formed due to atmospheric forcing and tidal potential. The hydrophysical fields are calculated using the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), σ model based on primitive equations. We use the CORE data as atmospheric forcing at the sea surface; the tidal potential is described by the semidiurnal lunar constituent M2. Analyzing the simulation results makes it possible to emphasize that accounting for the semidiurnal tidal potential not only improves the accuracy of the sea-level calculation at coastal stations, but also generates subinertial baroclinic oscillations previously found in the Black Sea from the data of in situ observations.  相似文献   

6.
We have developed a parameterization of the dynamical and thermal effects of stationary orographic waves (SOWs) generated by the earth’s surface topography and included it into the general circulation model of the middle and upper atmosphere. We have analyzed the sensitivity of atmospheric general circulation at tropospheric to thermospheric altitudes to the impact of SOWs propagating from the troposphere. Changes in atmospheric circulation due to variations in the SOW generation and propagation have been considered for different seasons. It has been shown that, during solstices, the main dynamical and thermal impacts the middle atmosphere of winter hemispheres, where the SOW-induced changes in the velocity of zonal circulation can reach 30%. During equinoxes, the SOW impact is distributed more homogeneously between the Northern and Southern hemispheres, and the relative changes in the velocity of zonal circulation of the middle atmosphere may constitute 10%.  相似文献   

7.
A coupled atmosphere-ocean model intended for the simulation of coupled circulation at time scales up to a season is developed. The semi-Lagrangian atmospheric general circulation model of the Hydrometeorological Centre of Russia, SLAV, is coupled with the sigma model of ocean general circulation developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS), INMOM. Using this coupled model, numerical experiments on ensemble modeling of the atmosphere and ocean circulation for up to 4 months are carried out using real initial data for all seasons of an annual cycle in 1989–2010. Results of these experiments are compared to the results of the SLAV model with the simple evolution of the sea surface temperature. A comparative analysis of seasonally averaged anomalies of atmospheric circulation shows prospects in applying the coupled model for forecasts. It is shown with the example of the El Niño phenomenon of 1997–1998 that the coupled model forecasts the seasonally averaged anomalies for the period of the nonstationary El Niño phase significantly better.  相似文献   

8.
基于在一个连续层化条件下热带海洋波动的弱非线性动力学系统中建立的最低阶Lagrange余流协力学模型及由此导出的赤道波致Lagrange余流的一般解,导出了混合Rossby惯性重力波第一斜压模态导致的最低阶Lagrange余流的表达式。从中发现,该波可产生纬向、经向和铅垂方向的Lagrange余流,其中水平分量与赤道中、东太平洋表层流速的年平均值(约5cm/s)同量级;纬向和铅垂向余流关于赤道正对  相似文献   

9.
Preliminarystudyonthedynamicmechanismofthedeepequatorialjets¥WuDexing(ReceivedDecember15,1993;acceptedMarch7,1994)(Instituteo...  相似文献   

10.
有界赤道大洋波包解及其年际年代际变率   总被引:1,自引:0,他引:1  
Linearized shallow water perturbation equations with approximation in an equatorial β plane are used to obtain the analytical solution of wave packet anomalies in the upper bounded equatorial ocean. The main results are as follows. The wave packet is a superposition of eastward travelling Kelvin waves and westward travelling Rossby waves with the slowest speed, and satisfies the boundary conditions of eastern and western coasts, respectively.The decay coefficient of this solution to the north and south sides of the equator is inversely proportional only to the phase velocity of Kelvin waves in the upper water. The oscillation frequency of the wave packet, which is also the natural frequency of the ocean, is proportional to its mode number and the phase velocity of Kelvin waves and is inversely proportional to the length of the equatorial ocean in the east-west direction. The flow anomalies of the wave packet of Mode 1 most of the time appear as zonal flows with the same direction. They reach the maximum at the center of the equatorial ocean and decay rapidly away from the equator, manifested as equatorially trapped waves. The flow anomalies of the wave packet of Mode 2 appear as the zonal flows with the same direction most of the time in half of the ocean, and are always 0 at the center of the entire ocean which indicates stagnation, while decaying away from the equator with the same speed as that of Mode 1. The spatial structure and oscillation period of the wave packet solution of Mode 1 and Mode 2 are consistent with the changing periods of the surface spatial field and time coefficient of the first and second modes of complex empirical orthogonal function(EOF)analysis of flow anomalies in the actual equatorial ocean. This indicates that the solution does exist in the real ocean, and that El Ni?o-Southern Oscillation(ENSO) and Indian Ocean dipole(IOD) are both related to Mode 2.After considering the Indonesian throughflow, we can obtain the length of bounded equatorial ocean by taking the sum of that of the tropical Indian Ocean and the tropical Pacific Ocean, thus this wave packet can also explain the decadal variability(about 20 a) of the equatorial Pacific and Indian Oceans.  相似文献   

11.
On the basis of ground-based measurements of total ozone content (TOC) over Russia and a number of neighboring states during 1973–2002, the amplitudes and phases of TOC variations caused by the quasi-biennial oscillation (QBO) of wind in the equatorial stratosphere are estimated for different regions and for the whole area. The seasonal dependence of the QBO effect in the TOC is analyzed. It is shown that the magnitude and even the sign of the effect depend on the relation between the equatorial QBO phase and the season. The regional empirical models of seasonally dependent QBO effects are constructed. It is found that the seasonal dependence of regional effects accounts for 4% (in the north of the area) to 20% (in the south) of the interannual variability of the TOC. The relation between the QBO effect and the 11-year cycle of solar activity is analyzed. Significant differences are revealed in the effects under the conditions of maximum and minimum solar activity. The QBO effects obtained from observations at Russian stations, satellite measurements with a TOMS instrument, and spectrometric observations of the TOC at western European stations are compared, and their satisfactory agreement is shown. An analysis of the results suggests that the QBO effects in the TOC over Russia are caused by several interacting factors and apparently reflect their regional properties.  相似文献   

12.
The goal of this paper is to present some results on the monsoon circulation in the Indian Ocean simulated with a σ-coordinate ocean model developed at the Institute of Numerical Mathematics, RAS. The model has a horizontal resolution of (1/8)° × (1/12)° and contains 21 σ-layers of uneven thickness. Realistic bottom topography and land geometry are used. The numerical experiments were carried out for 15 years starting from the Levitus climatology for January and monthly mean climatic atmospheric forcing from the NCEP reanalysis data. The annual cycle of the surface and subsurface currents and temperature and salinity fields were analyzed. The model reproduces well the Summer Monsoon and the Winter Monsoon currents and their time evolution and spatial structures. The Somali Current is adequately modeled. During the Summer Monsoon, the velocities of the current exceed 2 m/s, while the total mass transport is approximately 70 Sv. The model results show that a reversal of the Somali Current from the northern direction in the summer to the southern direction in the winter is accompanied by the generation of anticyclonic eddies, which drift westward owing to the β-effect and dissipate either near the Somali shore or in the Gulf of Aden. The monsoon variability of the equatorial surface current and equatorial subsurface countercurrent system are analyzed. It is shown that these currents are generated predominantly by the zonal component of wind stress, in which the half-year harmonic dominates. This leads to the fact that the equatorial surface current also changes its direction with a half-year periodicity almost in phase with the wind. The oppositely directed subsurface compensational countercurrent changes its direction with a time lag of approximately one month. Gradient currents, which appear in the Bay of Bengal due to the riverine runoff, make an important contribution to the circulation. This effect manifests itself especially strongly in the summer during the peak of the Ganges River runoff, which transports fresh turbid waters. The principal features of the large-scale quasi-stationary gyre structure of the Indian Ocean such as the Great Whirl, Socotra high, and Laccadive high and low are simulated.  相似文献   

13.
We describe the space-and-time structure of large-scale thermal anomalies in the upper layer in the tropical zone of the Indian Ocean and study the mechanism of their formation. It is shown that the critical layer in which the phase velocities of propagation of disturbances coincide with the mean velocity of the zonal current can be formed in the central part of equatorial zone of the Indian Ocean (between 9° and 12°S). In this layer, the formation of growing disturbances is possible due to the barotropic-baroclinic instability of the system of zonal currents.  相似文献   

14.
王毅  崔凤娟 《海洋与湖沼》2015,46(2):241-247
本文通过分析RAMA印度洋观测浮标系统锚系ADCP实测资料,对赤道中印度洋上层海流季节变化进行了研究。研究结果表明,0°,80.5°E纬向流垂向剖面呈现上150m层一致的东向流,而经向流在100m以浅呈现表层向北次表层向南的翻转流结构。赤道中印度洋上层纬向流季节信号被半年周期的东向射流Wyrtki Jets(WJs)所控制。WJs发生于季风方向转换的季节,4—5月份较弱,10—11月份较强。赤道中印度洋上层经向流年周期信号显著。北半球夏季与冬季分别出现风应力旋度驱动的Sverdrup南向流与北向流。本文结论为赤道中印度洋上层环流季节变化特征的研究提供了观测角度的支持。  相似文献   

15.
印度洋上层海气相互作用对印度洋和太平洋气候系统有重要影响。目前针对印度洋气候态环流特征已有较为全面的研究,但针对印度洋环流的年际变化及其季节性差异的特征分析和具体作用机制,仍缺乏深入的研究。本文利用1979—2007年Simple Ocean Data Assimilation(SODA)再分析资料研究了赤道印度洋表层辐合辐散的年际变异及其季节依赖性。结果表明,以赤道为中心,印度洋上层异常海流,在经向上形成显著的辐合(辐散)现象,究其原因主要是赤道纬向风异常形成的Ekman流所导致。进一步分析表明,热带印度洋异常纬向风的成因与太平洋-印度洋的热力强迫过程作用有关,并且不同的热力强迫过程呈现出显著的季节差异性。此热力强迫过程,具体可分为3种类型:第一类是太平洋纬向海表热力差异的遥强迫作用,主要发生在冬末春初,热带太平洋的纬向热力差异通过调节Walker环流,在印度洋激发出一个异常的次级环流,对应的大气低层形成纬向风异常;第二类是东-西印度洋海表热力差异的局地强迫作用导致的局地环流,使赤道印度洋上空形成纬向风异常,此过程在春末夏初较为显著;第三类是太平洋-印度洋热力差协同作用的结果,使赤道印度洋盛行异常的纬向风,此过程在秋季起主导作用。  相似文献   

16.
Analysis of statistical characteristics of cyclones and anticyclones in the latitudinal belt between 20° and 80°N has been performed with the NCEP/NCAR reanalysis data and simulations with the general circulation climate model of the Institute of Numerical Mathematics of the Russian Academy of Sciences (INM RAS GCCM). The model results have been analyzed for the second half of the 20th century against the NCEP/NCAR reanalysis data and for the 21st century with the SRES-A2 anthropogenic scenario. Overall for the 20th century, no statistically significant changes in the number of cyclones and anticyclones are obtained from either the NCEP/NCAR reanalysis data [1] or from simulations with the INM RAS GCCM [2]. It is found that the total number of cyclones and anticyclones decreased in the 20th century as compared to the 21st century. It is shown that cumulative distributions of the number of cyclones and anticyclones by their intensities and areas have an exponential form from both the reanalysis data and the model simulations, although the corresponding exponents are different.  相似文献   

17.
1IntroductionThetropicalPacificOceanplaysanimpor-tantroleintheclimatevariabilitiessuchasElNi-no-SouthernOscillation(ENSO)phenomenon(Chao,1993).ManystudieshavefoundthatthetropicalPacificvariabilitiescanhavesignifi-cantinfluenceontheoceancirculationintheseasadjacenttoChina(Yu,1985;Chaoetal.,1996;Wangetal.,2002).TheseaareaadjacenttoChinaischaracterizedbyitscomplextopog-raphyandnumerousnarrowstraits,andthusre-quiresafinegridtoresolve.Tostudytheinter-actionbetweenthetropicalPacificandChinas…  相似文献   

18.
We conducted 1-year-long mooring observations four times below 2000?m, slightly south of the equator (2°39?? to 4°35??S) at 162°E in the Melanesian Basin in order to detect the southward deep western boundary return current crossing the equator. Contrary to our initial expectation of the deep flow scheme in the equatorial western boundary region, the observed results indicated a fairly complicated flow configuration. We analyzed the results with the help of a high-resolution model simulation. The ensemble average of the horizontal flow at each level near the deep western boundary indicates a significant westward flow at 2000 and 2250?m, with an insignificant southward component at 2500 and 2750?m. The annual mean meridional transports are very small (>1?Sv) and insignificant, with an ensemble-averaged value of 0.3?Sv (southward) ±0.4?Sv at most. Combining this with high-resolution model results, it is deduced that the southward transport of the deep western boundary current (DWBC) leaving the equator may be smaller than those obtained by low-resolution models, because of trapping of its fairly large fraction in the equatorial zone. Annual-scale flow patterns are classified into several categories, mainly based on the meridional-flow dominating or the zonal-flow dominating pattern. A case of the meridional-flow dominating patterns may possibly capture an annual-scale variability of DWBC, because its meridional transport variation, though somewhat weak, is consistent with that simulated. The zonal-flow dominating regime includes two types: long-lasting, almost steady westward flows and long-term zonal flow oscillations. The former seems to comprise well-known zonally elongated and meridionally narrow structures of the zonal flow beneath the thermocline in the equatorial region. The ensemble-averaged flow mentioned above is dominated by this type at the upper two levels 2000 and 2250?m, with total westward transport of 1.6?±?0.7?Sv. The latter type seems to be a manifestation of the vertically propagating equatorial annual Rossby waves.  相似文献   

19.
On the basis of satellite observations of column carbon monoxide (CO) and total ozone (TO), an analysis has been performed of the connection of the interannual variability of CO with the quasi-biennial oscillation (QBO) of the equatorial stratospheric wind and the QBO of total ozone. It is found that the CO total colomn over most of the globe in the westerly phase of the QBO is greater than that in the easterly phase. The global distribution of the CO QBO amplitudes exhibits a local maximum over Indonesia, where the peak-to-peak amplitude of the CO QBO signal averages 15% of the local annual mean CO in this region. Analysis shows that the QBOs of CO are well synchronized with the QBO of wind at 50 hPa. At the same time, a joint analysis of the characteristics of the CO QBO and TO QBO demonstrates no direct photochemical coupling between of the quasi-biennial variations of TO and CO.  相似文献   

20.
SST年循环对El Niño事件局地海气过程的影响   总被引:2,自引:0,他引:2  
利用Hadley中心逐月海表温度、欧洲中心ERA-40的10 m风场及CMAP降水资料探讨了年循环对热带太平洋El Niño海气相互作用过程的影响。尽管El Niño对应的海表温度异常主要出现在赤道东太平洋,经向上呈南北对称分布,然而其对应的大气响应在El Niño年衰减阶段却有着强的向南移动特征。在El Niño发展年的11月之前,强的西风和降水异常主要出现在赤道中太平洋;在12月份之后,赤道上的西风和降水异常迅速南移至5°S,随后西风一直维持在该位置直至衰亡。同时,西太平洋负降水和反气旋异常向北移动。这种SST异常与其大气响应的经向移动不一致,主要是由热带中太平洋气候态SST的季节性南移导致的。由于对流与海温之间存在非线性关系,即当总SST超过一定的阈值,对流降水才会迅速增强;因此相应的对流响应也随着总海温的南移而南移,风场响应也同时南移。此外,南半球增强的对流会通过经向环流进一步抑制北半球的降水,从而使西太平洋负降水和反气旋异常增强并北移。通过分析有/无年循环的两组数值试验结果验证了上述结论,即有年循环的试验较真实地模拟出了观测中异常西风南移和西北太平洋反气旋异常的出现;无年循环试验尽管能模拟出El Niño年赤道中太平洋的西风异常,但其却没有南北向的移动,西北太平洋的反气旋也没有出现。因此,热带中太平洋气候态暖海温的季节循环对El Niño事件大气响应有着至关重要的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号