首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The world-famous Cu-Zn-Pb-Ag deposit at Cerro de Pasco, Peru, consists of texturally massive pyrite, texturally massive sphalerite-galena-pyrite, and veins containing pyrite and enargite. Historically the deposit has been considered to be the hydrothermal product of the adjacent Miocene volcanic and intrusive complex (locally known as the Vent). However, both the texturally massive sulfides of the deposit and the pre-Miocene strata are cut by the Longitudinal fault, one of the largest faults in the district, but the Vent is not. Imbrication by the Longitudinal fault zone (duplex structures) has thickened the deposit so that it is amenable to open-pit mining. Dikes and pyrite-enargite veins pass from the Vent into the massive sulfides; fragments of massive pyrite occur in the Vent. Thus, no matter what their origin, the texturally massive sulfides are older and, therefore, genetically unrelated to the Vent.  相似文献   

2.
Uturuncu is a dormant volcano in the Altiplano of SW Bolivia. A present day ~70 km diameter interferometric synthetic aperture radar (InSAR) anomaly roughly centred on Uturuncu’s edifice is believed to be a result of magma intrusion into an active crustal pluton. Past activity at the volcano, spanning 0.89 to 0.27 Ma, is exclusively effusive and almost all lavas and domes are dacitic with phenocrysts of plagioclase, orthopyroxene, biotite, ilmenite and Ti-magnetite plus or minus quartz, and microlites of plagioclase and orthopyroxene set in rhyolitic groundmass glass. Plagioclase-hosted melt inclusions (MI) are rhyolitic with major element compositions that are similar to groundmass glasses. H2O concentrations plotted versus incompatible elements for individual samples describe a trend typical of near-isobaric, volatile-saturated crystallisation. At 870 °C, the average magma temperature calculated from Fe–Ti oxides, the average H2O of 3.2 ± 0.7 wt% and CO2 typically <160 ppm equate to MI trapping pressures of 50–120 MPa, approximately 2–4.5 km below surface. Such shallow storage precludes the role of dacite magma emplacement into pre-eruptive storage regions as being the cause of the observed InSAR anomaly. Storage pressures, whole-rock (WR) chemistry and phase assemblage are remarkably consistent across the eruptive history of the volcano, although magmatic temperatures calculated from Fe–Ti oxide geothermometry, zircon saturation thermometry using MI and orthopyroxene-melt thermometry range from 760 to 925 °C at NNO ± 1 log. This large temperature range is similar to that of saturation temperatures of observed phases in experimental data on Uturuncu dacites. The variation in calculated temperatures is attributed to piecemeal construction of the active pluton by successive inputs of new magma into a growing volume of plutonic mush. Fluctuating temperatures within the mush can account for sieve-textured cores and complex zoning in plagioclase phenocrysts, resorption of quartz and biotite phenocrysts and apatite microlites. That Fe–Ti oxide temperatures vary by ~50–100 °C in a single thin section indicates that magmas were not homogenised effectively prior to eruption. Phenocryst contents do not correlate with calculated magmatic temperatures, consistent with crystal entrainment from the mush during magma ascent and eruption. Microlites grew during ascent from the magma storage region. Variability in the proportion of microlites is attributed to differing ascent and effusion rates with faster rates in general for lavas >0.5 Ma compared to those <0.5 Ma. High microlite contents of domes indicate that effusion rates were probably slowest in dome-forming eruptions. Linear trends in WR major and trace element chemistries, highly variable, bimodal mineral compositions, and the presence of mafic enclaves in lavas demonstrate that intrusion of more mafic magmas into the evolving, shallow plutonic mush also occurred further amplifying local temperature fluctuations. Crystallisation and resorption of accessory phases, particularly ilmenite and apatite, can be detected in MI and groundmass glass trace element covariation trends, which are oblique to WRs. Marked variability of Ba, Sr and La in MI can be attributed to temperature-controlled, localised crystallisation of plagioclase, orthopyroxene and biotite within the evolving mush.  相似文献   

3.
陈荣魁 《福建地质》2015,34(2):118-124
玻利维亚波托西市岗鲁蒂约斯矿区位于南美洲安第斯成矿带中部。矿区内锡矿床主要产于近顺层侵入、缓倾的斜长斑岩的内外接触带中,缓倾斜长斑岩内外接触带地层为白垩系上段紫红色粉砂岩与中段灰白色细砂岩、硅质砂岩。矿床成因类型为受地层控制的层状岩浆热液型锡石-硫化物型矿床。  相似文献   

4.
About 100 000 km2 of the previously unmapped Bolivian sector of the Central Brazil shield has been studied by “Proyecto Precámbrico”, an Anglo-Bolivian technical cooperation programme. The Lower Proterozoic is represented by the Lomas Maneches Granulite Group and the bulk of the Chiquitania Paragneiss Complex, which were formed during the Trans-Amazonic orogenic cycle (± 2000 Ma). The Middle Proterozoic spans the orogenic cycles of San Ignacio (± 2000-1300 Ma) and Sunsas (<1300-950 Ma). The San Ignacio cycle included the deposition of the San Ignacio Schist Group, now belts of pelitic schists with basic/ultrabasic sills, and the subsequent mobilisation of these and older rocks within a north-trending orogenic belt, accompanied by granitoid development. The Sunsas cycle began with the deposition of the molassic Sunsas Group and closed with the growth of a westnorthwest-trending orogenic belt, bordered to the north by a marginal zone and a stable craton, which was accompanied by granitoid phases and major basic/ultrabasic igneous activity. The close of the Sunsas orogeny marked the cratonization of the shield at about 950 Ma.Unmetamorphosed Upper Proterozoic and possibly Cambrian sediments on the southern and eastern flanks of the shield represent marine transgressions related to the intra-continental Braziliano orogenic cycle. East-trending dolerite dykes were probably intruded during this period within the shield.  相似文献   

5.
Tony Waltham 《Geology Today》2005,21(5):187-190
Silver mining in Bolivia exploited the richest hill on Earth to finance the imperial Spanish in the 16th century. The mines still operate at Potosi today, with primitive conditions underground, but silver production may be boosted by new geological understanding.  相似文献   

6.
Zusammenfassung Rooseveltit findet sich in der Oxidationszone der Lagerstätten San Francisco de los Andes und Cerro Negro de la Aguadita, in der Provinz San Juan, Argentinien, auf 30°22 S und 69°33 W. Er bildet sehr feinkörnige, weiß-graue, nach Bismuthinit pseudomorphe Aggregate. Die Brechungsindizes liegen zwischenn=2,10 und 2,30. Die Vickershärte beträgt 513 (4–5 der Mohs'schen Härteskala). Mittels Elektronenmikrosonde wurde folgende chemische Zusammensetzung bestimmt: As=21,5±1%, Bi=60,9±2%. Rooseveltit ist monoklin mita 0=6,878(1)Å, b0=7,163(1) Å, c0=6,735(1) Å, =104° 46±1, Z=4, calc.=6,94 g·cm–3, RaumgruppeP 21/n.Rooseveltit wurde nach drei verschiedenen Methoden synthetisiert. Die Pulverdiagramme der synthetischen Produkte stimmen mit dem des Minerals überein. Die Brechungsindizes wurden mitn =2,13(2) bzw. n=2,25(2) und die Dichte mit obs.=7,01 g·cm–3 bestimmt. Zellparameter: a0-6,882(1) Å, b0=7,164(1) Å, c0=6,734(1) Å, =104° 50,5±0,7, calc.=6,94 g·cm–3. Das synthetische Material schmilzt um 950°C. Selbst nach mehrstündigem Erhitzen auf 920°C läßt sich keine Veränderung im Pulverdiagramm des Minerals festellen.Es wird versucht, die natürliche Bildung des Rooseveltits zu erklären.
Rooseveltite from San Francisco de los Andes and Cerro Negro de la Aguadita, San Juan, Argentina
Summary Rooseveltite occurs in the weathering zone of the San Francisco de los Andes and Cerro Negro de la Aguadita mines, located in the San Juan Province, Argentina, at 30° 22S and 69° 33W. It appears in grey, finegrained aggregates pseudomorph after bismuthinite. Refraction index ranges fromn=2.10 to 2.30. The Vickers microhardness is 513 (4–5 of Mohs' scale). Chemical composition from electron micro probe measurements is As 21.5±1% and Bi 60.9±2%. Rooseveltite is monoclinic, with a0=6.878(1) Å, b0=7.163(1) Å, c0=6.735(1) Å, =104° 46±1, Z=4, calc.=6,94 g·cm–3, space groupP 21/n.The synthetic compound was prepared by three different methods. The powder pattern are the same as that of the mineral. Refraction index n=2.13(2) and n=2.25(2). The measured specific gravity is pobs.=7,01 g·cm–3. Cell parameters: a0=6.882(1) Å, b0=7.164(1) Å,c 0=6.734(1) Å, =104° 50.5±0.7, calc.=6,94 g·cm–3. The synthetic material melts at about 950°C. After heating to 920°C no variations were observed in the powder diagram of the mineral.It is tried to explain the formation of rooseveltite in natural environment.


Mit 2 Abbildungen  相似文献   

7.
林锦荣  胡志华  王勇剑  张松  陶意 《岩石学报》2019,35(9):2801-2816
相山铀矿田的铀多金属矿化主要可划分为碱性铀矿化、酸性铀矿化、铅锌银铜矿化和金矿化四种类型。通过沥青铀矿和矿化岩石U-Pb等时线、黄铁矿Rb-Sr等时线、绢云母~(40)Ar-~(39)Ar同位素年龄测定,结合铀多金属成矿特征研究,厘定了相山铀矿田铀多金属成矿时代,确定铀多金属矿化的成矿时序为:碱性铀矿化、铅锌银铜矿化、金矿化、酸性铀矿化。锆石裂变径迹研究表明,相山矿田铀多金属矿化样品的锆石裂变径迹峰值年龄与U-Pb、Rb-Sr和~(40)Ar-~(39)Ar同位素年龄一致性良好,裂变径迹年龄(峰值年龄)可以限定热液铀多金属成矿热事件时代。碱性铀成矿热事件的锆石裂变径迹峰值年龄为119. 8~125. 6Ma;金成矿热事件和铅锌银铜多金属成矿热事件的锆石裂变径迹峰值年龄为106. 1~113. 8Ma;酸性铀成矿热事件的锆石裂变径迹峰值年龄为86. 7~100. 0Ma;新发现一期锆石裂变径迹峰值年龄为66. 4~78. 6Ma的热事件,该期热事件可能为相山矿田最晚一期酸性铀成矿热事件。相山矿田66. 4~78. 6Ma的铀成矿热事件,与华南花岗岩型热液铀矿床的区域成矿热事件时代耦合,该发现对华南火山岩型铀矿成矿时代的重新认识,对火山岩型、花岗岩型铀矿床成矿统一性认识具有重要意义。  相似文献   

8.
宁夏固原炭山窑山组形成时代的裂变径迹热史约束   总被引:2,自引:0,他引:2  
查明鄂尔多斯盆地西缘窑山组的形成时代,是正确进行地层对比、恢复盆地原貌及其演化的关键。根据\  相似文献   

9.
The Upper Miocene Cerro Morado Andesites constitutes a mafic volcanic field (100 km2) composed of andesite to basaltic andesite rocks that crop out 75 km to the east from the current arc, in the northern Puna of Argentina. The volcanic field comprises lavas and scoria cones resulting from three different eruptive phases developed without long interruptions between each other. Lavas and pyroclastic rocks are thought to be sourced from the same vents, located where orogen-parallel north-south faults crosscut transverse structures.The first eruptive phase involved the effusion of extensive andesitic flows, and minor Hawaiian-style fountaining which formed subordinate clastogenic lavas. The second phase represents the eruption of slightly less evolved andesite lavas and pyroclastic deposits, only distributed to the north and central sectors of the volcanic field. The third phase represents the discharge of basaltic andesite magmas which occurred as both pyroclastic eruptions and lava effusion from scattered vents distributed throughout the entire volcanic field. The interpreted facies model for scoria cones fits well with products of typical Strombolian-type activity, with minor fountaining episodes to the final stages of eruptions.Petrographic and chemical features suggest that the andesitic units (SiO2 > 57%) evolved by crystal fractionation. In contrast, characteristics of basaltic andesite rocks are inconsistent with residence in upper-crustal chambers, suggesting that batches of magmas with different origins or evolutive histories arrived at the surface and erupted coevally.Based on the eruptive styles and lack of volcanic quiescence gaps between eruptions, the Cerro Morado Andesites can be classified as a mafic volcanic field constructed from the concurrent activity of several small, probably short-lived, monogenetic centers.  相似文献   

10.
Potshards discovered during excavation of bridge pilasters for a major expressway over the Rio Indio floodplain, a stream incised within the karsts of north‐central Puerto Rico, required large‐scale archaeological excavation. Five‐meter‐deep bridge pilaster excavations in the alluvial valley provide a 4500‐year history of deposition. Stratigraphic analysis of the exposed pilaster walls in combination with textural and organic carbon analyses of sediment cores obtained over a much broader area suggest a fluvial system dominated by overbank deposition. Six sequences of alternating light and dark layers of sediment were identified. The darker layers are largely composed of silts and clays, whereas the lighter layers are rich in sand‐sized sediment. Archaeological evidence indicates the organic‐rich dark layers, believed to be buried A horizons, coincide with pre‐historic occupation by Cedrosan Saladoid, Elenan Ostionoid, and Chican Ostionoid, extending from A.D. 450 to A.D. 1500. Lighter layers below the dark soil horizons are interpreted as overbank deposits from large magnitude flood events. The floodplain aggraded discontinuously with rapid deposition of sand followed by gradual accumulation of silt, clay, and organic material. An approximately 1‐m‐thick layer of coarse sand and gravel halfway up the stratigraphic column represents an episode of more frequent and severe floods. Based on radiocarbon ages, this layer aggraded between A.D. 1000 and A.D. 1100, which is well within the Elenan Ostionoid era (A.D. 900–1200). Rates of sedimentation during this period were approximately 8 mm per year, ten times greater than the estimates of sedimentation rates before and after this flood sequence. The cause for the change in deposition is unknown. Nonetheless the Elenan Ostionoid would have had to endure frequent loss of habitation structures and crops during these events. © 2003 Wiley Periodicals, Inc.  相似文献   

11.
12.
The Betic–Rif belt, in the western Mediterranean, experienced a pre-Alpine history and was later extensively reworked by major Alpine tectonics. There is abundant data showing that the Betic chain suffered very high cooling rates during its Alpine history, constrained mainly by geochronology using various isotopic systems and by palaeontological age determinations. In the westernmost part of the chain the high closure-temperature isotopic systems recorded Miocene high-grade metamorphism in the country rocks. In order to constrain the later stages of cooling, fission-track analysis has been applied to both zircon and apatite. The results point to extremely high rates of cooling (400 °C/Ma) between 21 and 19 Ma. Rates slowed to 100 °C/Ma for the time period 19 to about 12 Ma. The fission-track analysis also confirms the existence of an extensional tectonic stage between 19 and 17 Ma.  相似文献   

13.
The Acadian thermal history of western Maine   总被引:5,自引:0,他引:5  
ABSTRACT Following the Middle Devonian Acadian deformation an extensive belt of high grade metamorphism was formed in New England. In south-western Maine, at the northern end of this belt, there occurs a transition along the strike from regional low-pressure/high-temperature metamorphism to contact metamorphism in low-grade rocks. Petrological studies indicate that this transition occurs along a surface plunging to the north-east at about 3.5°, with respect to the Middle-to-Late Devonian erosion surface. In addition, detailed petrological mapping has defined a history of temporally separate, localized metamorphic events associated with plutonism and occurring at increasingly deeper levels to the south-west. Geochronological studies constrain ambient temperatures in the transition zone at the time of metamorphism to be less than 300° C in the north-east and between 350° C and 500° C in the south-west. They also establish a pattern of diachronous cooling due to differential uplift and erosion, with cooling occurring later and most rapidly to the south-west. Geophysical evidence suggests that along with this spatial variation in metamorphic style the shapes of the plutons in Maine undergo a transition from laterally extensive sheet-like bodies in the high grade terrane to more equant-shaped bodies in the low-grade terrane. Using the results of these petrological, geochronological and geophysical studies, as well as those of stratigraphical and structural studies we construct a thermal model for the transition zone. The model suggests that the Acadian metamorphism in south-western Maine is a result of deep-level contact metamorphism near laterally extensive granitic sills dipping to the north-east with respect to the present erosion surface. The plutons themselves are interpreted to be a result of lower crustal melting in response to crustal thickening in the presence of normal or slightly augmented mantle heat flux.  相似文献   

14.
Exposures of metamorphic basement in the Central Andes are scarce and reconstructions of the history of the Pacific margin of Gondwanaland must rely on a few isolated outcrops. We studied two areas of exposed basement in northernmost Chile (Belen) and westernmost Bolivia (Cerro Uyarani). The Belen metamorphic complex has been known for some time and consists of fault-bounded amphibolites, gneisses, schists, and minor quartzites overlain by folded Mesozoic to Cenozoic strata. The Cerro Uyarani is the only basement outcrop on the Bolivian Altiplano and has only recently been found and studied by geological reconnaissance. It consists of foliated mafic and felsic granulites, charnockites, and amphibolites. How do these basement occurrences compare and how do they relate to the other Precambrian crustal domains in the Central Andes? To answer these questions, we used geothermobarometers to reconstruct the PT conditions of metamorphism, as well as geochemical analyses and petrological methods to study these rocks. The two basement blocks were found to have distinct geological histories and are probably separated by a major crustal domain boundary. Isotopic fingerprinting by Pb-isotopes clearly exclude Laurentian crustal components either in the protoliths or as reworked material. This signature is quite distinct from basement rocks farther south in Chile and northwestern Argentina.  相似文献   

15.
The last ca. 20,000 yr of palaeoenvironmental conditions in Podocarpus National Park in the southeastern Ecuadorian Andes have been reconstructed from two pollen records from Cerro Toledo (04°22'28.6S, 79°06'41.5W) at 3150 m and 3110 m elevation. Páramo vegetation with high proportions of Plantago rigida characterised the last glacial maximum (LGM), reflecting cold and wet conditions. The upper forest line was at markedly lower elevations than present. After ca. 16,200 cal yr BP, páramo vegetation decreased slightly while mountain rainforest developed, suggesting rising temperatures. The trend of increasing temperatures and mountain rainforest expansion continued until ca. 8500 cal yr BP, while highest temperatures probably occurred from 9300 to 8500 cal yr BP. From ca. 8500 cal yr BP, páramo vegetation re-expanded with dominance of Poaceae, suggesting a change to cooler conditions. During the late Holocene after ca. 1800 cal yr BP, a decrease in páramo indicates a change to warmer conditions. Anthropogenic impact near the study site is indicated for times after 2300 cal yr BP. The regional environmental history indicates that through time the eastern Andean Cordillera in South Ecuador was influenced by eastern Amazonian climates rather than western Pacific climates.  相似文献   

16.
17.
The Tertiary collision-related thermal history of the NW Himalaya   总被引:3,自引:0,他引:3  
Garnet‐whole rock Sm‐Nd data are presented for several samples from the Indian plate in the NW Himalaya. These dates, when combined with the P‐T evolution of the Indian plate rocks, allow a thorough reconstruction of the prograde thermal evolution of this region (including the Nanga Parbat Haramosh Massif) during the early Cenozoic. Combining these data with Rb‐Sr mineral separate ages, enables us to constrain the post‐peak cooling history of this region of the Himalaya. The data presented here indicate that the upper structural levels of the cover rocks of the Nanga Parbat Haramosh Massif, and similar rocks in the Kaghan Valley to the south‐west, were buried to pressures of c. 10 kbar and heated to temperatures of c. 650 °C at 46–41 Ma. The burial of the lower structural levels of the cover rocks of the Nanga Parbat Haramosh Massif, to similar depths but at higher temperatures of c. 700 °C, occurred slightly later at 40–36 Ma, synchronous with the imbrication and exhumation of the amphibolite‐ and eclogite‐grade rocks of the Kaghan Valley. In contrast, the cover rocks of the Nanga Parbat Haramosh Massif were not imbricated or exhumed at this time, remaining buried beneath the Kohistan‐Ladakh Island Arc until the syntaxis‐forming event that occurred in the last 10 Myr. The timing of tectonic events in the north‐western Himalaya differs from that experienced by the rocks of the Central Himalaya in that the earliest stage of burial in the NW Himalaya predates that of the Central Himalaya by c. 6 Myr. This difference may result from the diachronous nature of the Indo‐Asian collision or may simply be a reflection of differing timing at different structural levels.  相似文献   

18.
We review the crystallization of the iron meteorite chemical groups, the thermal history of the irons as revealed by the metallographic cooling rates, the ages of the iron meteorites and their relationships with other meteorite types, and the formation of the iron meteorite parent bodies. Within most iron meteorite groups, chemical trends are broadly consistent with fractional crystallization, implying that each group formed from a single molten metallic pool or core. However, these pools or cores differed considerably in their S concentrations, which affect partition coefficients and crystallization conditions significantly. The silicate-bearing iron meteorite groups, IAB and IIE, have textures and poorly defined elemental trends suggesting that impacts mixed molten metal and silicates and that neither group formed from a single isolated metallic melt. Advances in the understanding of the generation of the Widmanstätten pattern, and especially the importance of P during the nucleation and growth of kamacite, have led to improved measurements of the cooling rates of iron meteorites. Typical cooling rates from fractionally crystallized iron meteorite groups at 500–700 °C are about 100–10,000 °C/Myr, with total cooling times of 10 Myr or less. The measured cooling rates vary from 60 to 300 °C/Myr for the IIIAB group and 100–6600 °C/Myr for the IVA group. The wide range of cooling rates for IVA irons and their inverse correlation with bulk Ni concentration show that they crystallized and cooled not in a mantled core but in a large metallic body of radius 150±50 km with scarcely any silicate insulation. This body may have formed in a grazing protoplanetary impact. The fractionally crystallized groups, according to Hf–W isotopic systematics, are derived originally from bodies that accreted and melted to form cores early in the history of the solar system, <1 Myr after CAI formation. The ungrouped irons likely come from at least 50 distinct parent bodies that formed in analogous ways to the fractionally crystallized groups. Contrary to traditional views about their origin, iron meteorites may have been derived originally from bodies as large as 1000 km or more in size. Most iron meteorites come directly or indirectly from bodies that accreted before the chondrites, possibly at 1–2 AU rather than in the asteroid belt. Many of these bodies may have been disrupted by impacts soon after they formed and their fragments were scattered into the asteroid belt by protoplanets.  相似文献   

19.
The Riphean rocks of the Baikit anteclise have been examined using pyrolysis Rock–Eval 6 to evaluate the subsidence history and erosion level. The studied Riphean rocks have the МK3–МK4 catagenesis grade. Based on the catagenesis of organic matter we propose a model of maximum burial before the beginning of the accumulation of Vendian deposits. Estimated calculations of subsidence and erosion have shown that the assessed catagenesis grade could be reached at a depth of 7 km, while the erosion level was approximately 5–7 km.  相似文献   

20.
Fossil mammal sites of late Miocene age (ca 9 Ma) occur in hourglass‐shaped, non‐interconnected cavities up to 15 m deep, hosted in mudstone (mostly sepiolite), chert and carbonate bedrock in Cerro de los Batallones. This paper provides a model for the sedimentary infilling of the cavities, which functioned as traps for vertebrate faunas and contain one of the richest and best preserved Neogene mammal assemblages of the Iberian Peninsula. Generation of the mammal‐bearing cavities started with the solution of underlying evaporites, which resulted in fissures that were subsequently enlarged by subsurface piping, a process rarely preserved in the ancient sedimentary record. The system of subterranean cavities evolved into a pseudokarst landscape, resulting in doline‐like shafts reaching the ancient land surface. The sedimentary infilling of the cavities comprises both clastic and carbonate lithofacies that were investigated by outcrop observation, standard and scanning electron microscope petrography, mineralogical analysis, and stable isotope geochemistry. Gravel and breccia talus deposits, clast and mud‐supported gravel, pebbly sandstone and mudstone are common detrital infill deposits mostly derived by overflow erosion of bedrock. The deposits containing the mammal bones are marls, and occur both in subsurface cavities and doline‐like depressions. In the underground cavities, marlstone was mainly of clastic origin and accumulated in ponds scattered over the floor of the cavity. In contrast, marlstone deposits in the surface dolines formed mostly as a result of biochemical carbonate deposition in small shallow lakes subjected to fluctuation of the water level. The δ18O and δ13C carbonate values indicate different origins for the two kinds of marls. During the final phases of pipe infill the doline marlstone sealed the mammal sites, usually off‐lapping the adjacent bedrock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号