首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray and H observations of an erupting filament, discussed herein, and other observations of the associated flare on 1980 May 21, suggest that an erupting filament played a major role in the X-ray flare. While Antonucci et al. (1985) analyzed the May 21 flare as one of the best cases of chromospheric evaporation, the possible contribution from X-ray emitting erupting plasma has been ignored. We show that pre-heated plasma existed and may have contributed part of the blue-shifted X-ray emission observed in the Caxix line, which was formerly attributed solely to chromospheric evaporation. Thus it remains an open question - in two-ribbon flares in particular - just how important chromospheric evaporation is in flare dynamics.  相似文献   

2.
We present observations of the flare of May 14, 1981, which can be classified as a three-ribbon flare. After a detailed analysis in metric, decimetric, microwave, optical, and X-ray ranges we propose that the event was caused by a reconnection process driven by erupting filament. The energy was liberated in the current sheet above the filament in the region between the erupting flux and the overlying field. It is shown that plasma microinstabilities develop as the plasma enters the current sheet. The observations indicate that during the precursor phase a certain low-frequency turbulence, such as ion-accoustic turbulence had to be present.The reconnection rate was growing due to the increasing tension of the stretched overlying field. It is shown that the reconnection proceeded in the Sonnerup-Petschek regime during the precursor, and changed to the pile-up regime in the fast reconnection phase, when the maximal lateral expansion (50 km s–1) of the H ribbons was observed. The proposed process of reconnection driven by an erupting filament can be applied to three- and four-ribbon flares.  相似文献   

3.
We present a study of a mini-filament erupting in association with a circular ribbon flare observed by NVST and SDO/AIA on 2014 March 17. The filament was located at one footpoint region of a large loops. The potential field extrapolation shows that it was embedded under a magnetic null point configuration. First, we observed a brightening of the filament at the corresponding EUV images, close to one end of the filament. With time evolution, a circular flare ribbon was observed around the filament at the onset of the eruption, which is regarded as a signature of reconnection at the null point. After the filament activation, its eruption took the form of a surge, which ejected along one end of a large-scale closed coronal loops with a curtain-like shape. We conjecture that the null point reconnection may facilitate the eruption of the filament.  相似文献   

4.
On 22 October, 1980, near the solar central meridian in the western vicinity of a large spot group, a subflare of the two-ribbon type was observed. Three surges were associated with this flare. Their starting points were situated close to the principal flare patches on both sides of a short filament that was visible for only a few hours. True flow velocities and decelerations along the arch-shaped surge trajectories have been determined for two of the surges. The highest velocities were found at the onset of the surges.The event was studied from a series of H on- and off-band flltergrams taken with the Debrecen coronagraph of 53 cm aperture.  相似文献   

5.
In this paper, we study multiwavelength observations of an M6.4 flare in Active Region NOAA 11045 on 7 February 2010. The space- and ground-based observations from STEREO, SoHO/MDI, EIT, and Nobeyama Radioheliograph were used for the study. This active region rapidly appeared at the north-eastern limb with an unusual emergence of a magnetic field. We find a unique observational signature of the magnetic field configuration at the flare site. Our observations show a change from dipolar to quadrapolar topology. This change in the magnetic field configuration results in its complexity and a build-up of the flare energy. We did not find any signature of magnetic flux cancellation during this process. We interpret the change in the magnetic field configuration as a consequence of the flux emergence and photospheric flows that have opposite vortices around the pair of opposite polarity spots. The negative-polarity spot rotating counterclockwise breaks the positive-polarity spot into two parts. The STEREO-A 195 Å and STEREO-B 171 Å coronal images during the flare reveal that a twisted flux tube expands and erupts resulting in a coronal mass ejection (CME). The formation of co-spatial bipolar radio contours at the same location also reveals the ongoing reconnection process above the flare site and thus the acceleration of non-thermal particles. The reconnection may also be responsible for the detachment of a ring-shaped twisted flux tube that further causes a CME eruption with a maximum speed of 446 km/s in the outer corona.  相似文献   

6.
Contarino  L.  Romano  P.  Yurchyshyn  V.B.  Zuccarello  F. 《Solar physics》2003,216(1-2):173-188
We describe a filament destabilization which occurred on 5 May 2001 in NOAA AR 9445, before a flare event. The analysis is based on Hα data acquired by THEMIS operating in IPM mode, Hα data and magnetograms obtained at the Big Bear Solar Observatory, MDI magnetograms and 171 Å images taken by TRACE. Observations at 171 Å show that ~ 2.5 hours before the flare peak, the western part of the EUV filament channel seems to split into two parts. The bifurcation of the filament in the Hα line is observed to take place ~ 1.5 hours before the flare peak, while one thread of the filament erupts ~10 min before the peak of the flare. Our analysis of longitudinal magnetograms shows the presence of a knot of positive flux inside a region of negative polarity, which coincides with the site of filament bifurcation. We interpret this event as occurring in two steps: the first step, characterized by the appearance of a new magnetic feature and the successive reconnection in the lower atmosphere between its field lines and the field lines of the old arcade sustaining the filament, leads to a new filament channel and to the observed filament bifurcation; the second step, characterized by the eruption of part of the filament lying on the old PIL, leads to a second reconnection, occurring higher in the corona.  相似文献   

7.
We analyzed multi-wavelength observations of the eruption of a small-scale filament on the quiet Sun. The filament first became thicker, then broke into two, and eventually underwent a partial eruption with possible rotating motion. The eruption was followed by a small flare with three bright kernels on either side of the eruptive section in Hα and a small coronal dimming near one end of this section in EUV and soft X-ray. On the photosphere, MDI magnetograms show the flux emergence or motions and cancellation between opposite polarities before and during the filament eruption. We find that this small-scale filament shows the similar characteristics as the previous findings in the large-scale filament eruptions on the multi-wavelength, indicating the common nature.  相似文献   

8.
By means of Hα, EUV, soft X-ray, hard X-ray, and photospheric magnetic field observations, we report the surge-like eruption of a small-scale filament, called “blowout surge” according to recent observations, occurring on a plage region around AR 10876 on 1 May 2006. Along magnetic polarity reversal boundaries with obvious magnetic cancelations, the filament was located underneath a compact coronal arcade and close to one end of large coronal loops around the AR’s periphery. The filament started to erupt about 8 min before the main impulsive phase of a small two-ribbon flare, which had two Hα blue-wing kernels connected by hard X-ray loop-top sources on the both sides of the filament. After the flare end, the filament further underwent a distant eruption following a path nearly along the preexisting large loops, and thus looked like an Hα surge and an EUV jet. During the eruption, a small coronal dimming was formed near the flare, while weak brightenings appeared around the remote end of the large loops. We interpret these joint observations as the filament eruption being confined and guided by the large loops. The filament eruption, initially embedded in one footpoint region of the large loops, can break away from the magnetic restraint of the overlying compact arcade, but might be still limited inside the large loops. As a result, the eruption took a surge form that can only expand laterally along the large loops rather than erupt radially.  相似文献   

9.
A detailed study of the charge composition of heavy solar cosmic rays measured in the January 25, 1971 solar flare including differential fluxes for the even charged nuclei from carbon through argon is presented. The measurements are obtained for varying energy intervals for each nuclear species in the energy range from 10 to 35 MeV nucleon?1. In addition, abundances relative to oxygen are computed for all the above nuclei in the single energy interval from 15 to 25 MeV nucleon?1. This interval contains measurements for all of the species and as a result requires no spectral extrapolations. An upper limit for the abundance of calcium nuclei is also presented. These measurements, when combined with other experimental results, enable the energy dependence of abundance measurements as a function of nuclear charge to be discussed. It is seen that at energies above about 10 MeV nucleon?1, the variations of abundance ratios are limited to about a factor of 3 from flare to flare, in spite of large variations in other characteristics of these solar events.  相似文献   

10.
Spectrograph and multiple-band polarimeter observations of the 24 April 1981 white-light flare indicate the presence of an optical continuum with intensity increasing strongly below 4000 Å. The flare emission (lines and continuum combined) is unpolarized and, at 3600 Å, exceeds the brightness of the background solar surface by 360%. Analysis of the spectrum between 3600 and 8200 Å, at a location three arc sec from the brightest point in the kernel, yields a probable temperature of 6700 K for the continuum emitting layer. The wavelength dependence of the continuum indicates emission by both negative hydrogen (H?) and Balmer continuum, with the H? probably originating in the upper photosphere at a height (above τ5000 Å = 1) in the range 200–300 km. Analysis of the Balmer lines and continuum yields an electron density 5.3 × 1013 cm?3 and a second-level hydrogen column density 1.1 × 1016 cm?2. The peak radiative output integrated over wavelength is 6.1 × 1027 erg s?1. The observed continuum intensity, if originating at a height of 300 km, implies an energy loss rate of 103 erg s?1 cm?3.  相似文献   

11.
Excepting intermittent type III activity, all the radio events over the frequency range 8–8000 MHz accompanying the initial stage of the 3B flare of 13 May, 1981 had their onset in a 2-min interval immediately preceding the peak of an impulsive Hα brightening (kernel) well away from the main flare. This kernel is identified as one footpoint of a loop of magnetic flux whose other end terminated in a transient brightening in an adjacent active region.  相似文献   

12.
The asymmetries and Doppler shifts of metallic lines of the 3B flare on September 19, 1979 are investigated in this paper. The results show that: (1) red asymmetries dominate in strong metallic lines, but blue asymmetries also exist in some weak lines; (2) the maximum of the line asymmetry always precedes the maximum of the line intensity; (3) the blue asymmetry occurs generally in the early phase, and can occasionally turn to a red one in the later phase; and (4) the line center has no obvious shift, regardless of the line asymmetry. It is proposed that, the mass motions around the temperature minimum region caused by the impulsive heating or the propagation of the chromospheric condensation can explain these observational results. The study on metallic lines has an auxiliary help for understanding the dynamic process in the lower atmosphere of solar flares.  相似文献   

13.
14.
The formation and eruption of active region filaments is supposed to be caused by the increase of a concentrated current embedded in the active region background magnetic field of an active region according to the theory of Van Tend and Kuperus (1978).The onset of a filament eruption is due to either changes in the background magnetic field or the increase of the filament current intensity. Both processes can be caused by the emergence of new magnetic flux as well as by the motion of the photospheric footpoints of the magnetic field lines. It is shown that if the background field evolves from a potential field to a nearly force-free field the vertical equilibrium of the current filament is not affected, but large forces are generated along the filament axis. This is identified as the cause of filament activation and the increase in filament turbulence during the flare build-up phase. Depending on the evolution of the background field and the current filament, two different scenarios for flare build-up and filament eruption are distinguished.This work was done while one of the authors (M.K.) was participating in the CECAM workshop on Physics of Solar Flares held at Orsay, France, in June 1979.  相似文献   

15.
16.
C. de Jager 《Solar physics》1983,86(1-2):21-32
We define the impulsive phase of a flare as its first phase, characterized by: X-ray bursts of short (seconds to tens of seconds) duration, a patchy X-ray morphology, and injection of energy. It lasts some five to ten minutes. The gradual or diffuse phase starts virtually at the same time as the impulsive one and is characterized by a gradually varying X-ray flux from a larger, diffuse, area situated higher than the sources of the impulsive X-ray bursts. The diffuse cloud is initially (during the first five minutes) hotter by a few million degrees than the sources of the impulsive phase bursts and is assumed to be caused by convective motions with upward velocities of a few hundred km s?1. It contains about the same number of energetic electrons as the impulsive burst patches contained initially. It cools gradually down by radiative and conductive losses, a process that may last for about an hour.  相似文献   

17.
In this paper the solar neutron and white-light flare is studied on the basis of radioastronomical observations. It is shown that the 3 June, 1982 flare had an impulsive character. A strong shock wave (M A 2.9) was observed unusually soon after the impulsive phase of the flare. The radio spectrum of this event shows that the primary acceleration process probably occurred in the region with an electron density of n e = 4.4 × 1015 m–3. The pulsations of the type IV radio burst, observed 15 min after the mass ejection process, manifest the reconnection process in the post-flare stage.Proceedings of the Workshop on Radio Continua during Solar Flares, held at Duino (Trieste), Italy, 27–31 May, 1985.  相似文献   

18.
A decrease in the total flux at 2800 MHz, or a negative burst was observed 15 min before the onset of the short duration, impulsive burst of May 19, 1969 at 14:30 UT and continued for another 16 min. It had been recognized originally in the records from the Algonquin Radio Observatory only as a fluctuation in a long enduring, gradual rise and fall event which had commenced at 12:40 UT. A detailed account of the radio flux variations in relation to the optical activity as described by Vorpahl (1973) is given and indicates that the onset of the negative burst and the southward motion of a dark filament are associated.Presented at 140th Meeting of the American Astronomical Society, June 1973, Columbus, Ohio.  相似文献   

19.
Spectra of a 2B flare on 3 February, 1983 were observed simultaneously at H, H, and Can H, K lines with a multichannel spectrograph in the solar tower telescope of Nanjing University. The flare occurred in an extended region of penumbra at S 17 W07 from 05 : 41 to 07 : 00 UT. By use of an iterative method to solve the equations describing hydrostatic, radiative, and statistical equilibrium for hydrogen and ionized calcium atoms, five semi-empirical models corresponding to different times of the chromospheric flare have been computed. The results show that after the beginning of the flare, the heating of the chromosphere starts and the transition layer begins to be displaced downwards. However, during the impulsive phase the flare chromospheric region has a rapid outward expansion followed by a quick downward contraction. At the same time the transition layer starts to ascend and then descend again. After the H intensity maximum, the flare chromospheric region continues to condense and attains its most dense phase more than ten minutes after the maximum. Finally, the flare chromospheric region returns slowly to the normal chromospheric situation.  相似文献   

20.
A. Hood  U. Anzer 《Solar physics》1987,111(2):333-346
The MHD stability of force-free, cylindrical arcades is investigated, including the stabilising effect of photospheric line tying. It is found that a wide variety of fields are stable. This suggests that either a departure from a force free equilibrium or suppression of line tying is necessary if a two-ribbon flare is to be triggered. It is postulated that in both circumstances, the existence of an active region filament is an essential preflare requirement for a two-ribbon flare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号