首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequency dispersion of electromagnetic parameters of earth materials has been widely documented in recent years. It is claimed that magnetotellurics (MT) may be significantly affected by dispersion. The paper studies the MT plane-wave interpretative problem for a one-dimensional earth characterized by the presence of dispersive layers. The theoretical properties of the MT field under the dispersion hypothesis, andthe main features of the dispersion phenomenon are synthetically reviewed. The examination of previously published MT curve responses over some models of dispersive earth section shows that ambiguity can arise when interpreting MT data with no other source of information. Thus it may be almost impossible to distinguish between the response of a dispersive section and an equally probable dispersion-free section. The dispersion magnetotelluric (DMT) method is proposed as a means to resolve the ambiguity. The DMT method is based on the execution, at the same site, of an MT sounding and of an always dispersion-free dc geoelectric deep sounding. The latter technique can be used to compute a synthetic dispersion-free MT wave impedance, to be compared with the measured MT wave impedance. The apparent dispersion function is introduced as a measure of divergence between the two wave impedances.  相似文献   

2.
The specific barrier model (SBM) is a particular case of a composite earthquake source model where the seismic moment is distributed in a deterministic manner on a rectangular fault plane on the basis of moment and area constraints. It is assumed that the fault surface is composed of an aggregate of subevents of equal diameter, the ‘barrier interval’. Furthermore, the subevents are assumed to rupture randomly and statistically independent of one another as the rupture front sweeps the fault plane. In the formulation of the far-field source spectrum of the SBM the ‘arrival time’ of the seismic radiation emitted by each subevent is specified via a probability density function (PDF). In the SBM the subevents are assumed to be of equal sizes (an assumption relaxed in a companion paper, referred to as Part I) and the PDF of ‘arrival times’ is assumed to be uniform. In this study we investigate the effects of different PDFs of ‘arrival times’ on the far-field source spectrum of the SBM. Different PDFs of ‘arrival times’ affect the source spectra primarily at the intermediate frequency range (between the first and second corner frequencies). Such effects become more pronounced as the earthquake magnitude increases. The far-field spectrum of seismic energy observed/recorded at a site depends on the location of the site relative to the causative fault plane, the location of rupture initiation (hypocenter) and the onset times of the rupturing subevents. All the above factors are effectively taken into account by the ‘isochrons’, which vary with source-site geometry. We investigate the selection of the appropriate PDF of seismic energy arrival times at a given site by computing isochrons for a grid of stations surrounding the earthquake fault, represented by the SBM. We show that only for stations located in a direction normal to the fault plane is the assumption of uniform PDF of ‘arrival times’ valid. At other sites non-uniform PDFs of ‘arrival times’ are observed. We identify and categorize the prevalent types of PDFs by directivity (forward vs. backward vs. neutral) and source-site distance (near-fault vs. far-field), show examples in which we group the stations accordingly. We investigate the effects of the different PDF-groups on the SBM source spectrum. Selection of the appropriate PDF for a given source-site configuration when simulating strong ground motions using the SBM in the context of the stochastic method is expected to yield more self-consistent, and physically realistic simulations.  相似文献   

3.
大地电磁资料的灵敏度研究   总被引:2,自引:0,他引:2  
本文研究了大地电磁资料对地球电性结构模型参数的灵敏度,它在反演解释中具有重要意义.通过研究均匀半空间中视电导率资料的灵敏度函数与计算分析实际观测资料的Fréchet导数和斜率表明,视电导率资料的灵敏度在地表最大,从地表向下呈指数衰减,频率愈高,电导率愈大,衰减也愈快.视电阻率资料和阻抗相位资料对高频、浅层和低阻层具有更高的灵敏度,几何参数的平均灵敏度高于电性参数的平均灵敏度,通常阻抗相位资料比视电阻率资料更灵敏.同时,根据阻抗实部定义的视电阻率与Kunetz定义的时间域大地电磁响应,反映地层电性差异的灵敏度最高. 文章还指出,在实际的反演解释中,如何正确有效地应用阻抗相位资料,提高分辨能力,仍是急待解决的问题.  相似文献   

4.
Abstract

The term ‘‘solitary wave'’ is usually used to denote a steadily propagating permanent form solution of a nonlinear wave equation, with the permanency arising from a balance between steepening and dispersive tendencies. It is known that large-scale thermal anomalies in the ocean are subject to a steepening mechanism driven by the beta effect, while at the smaller deformation scale, such phenomena are highly dispersive. It is shown here that the evolution of a physical system subject to both effects is governed by the ‘‘frontal semi-geostrophic equation'’ (FSGE), which is valid for large amplitude thermocline disturbances. Solitary wave solutions of the FSGE (here named planetons) are calculated and their properties are described with a view towards examining the behavior of finite amplitude solitary waves. In contrast, most known solitary wave solutions belong to weakly nonlinear wave equations (e.g., the Korteweg—deVries (KdV) equation).

The FSGE is shown to reduce to the KdV equation at small amplitudes. Classical sech2 solitons thus represent a limiting class of solutions to the FSGE. The primary new effect on planetons at finite amplitudes is nonlinear dispersion. It is argued that due to this effect the propagation rates of finite amplitude planetons differ significantly from the ‘‘weak planeton'', or KdV, dispersion relation. Planeton structure is found to be simple and reminiscent of KdV solitons. Numerical evidence is presented which suggests that collisions between finite amplitude solitary waves are weakly inelastic, indicating the loss of true soliton behavior of the FSGE at moderate amplitudes. Lastly, the sensitivity of solitary waves to the existence of a nontrivial far field is demonstrated and the role of this analysis in the interpretation of lab experiments and the evolution of the thermocline is discussed.  相似文献   

5.
晋光文 《地球物理学报》1991,34(04):465-473
本文研究了大地电磁资料对地球电性结构模型参数的灵敏度,它在反演解释中具有重要意义.通过研究均匀半空间中视电导率资料的灵敏度函数与计算分析实际观测资料的Fréchet导数和斜率表明,视电导率资料的灵敏度在地表最大,从地表向下呈指数衰减,频率愈高,电导率愈大,衰减也愈快.视电阻率资料和阻抗相位资料对高频、浅层和低阻层具有更高的灵敏度,几何参数的平均灵敏度高于电性参数的平均灵敏度,通常阻抗相位资料比视电阻率资料更灵敏.同时,根据阻抗实部定义的视电阻率与Kunetz定义的时间域大地电磁响应,反映地层电性差异的灵敏度最高. 文章还指出,在实际的反演解释中,如何正确有效地应用阻抗相位资料,提高分辨能力,仍是急待解决的问题.  相似文献   

6.
High-frequency surface-wave analysis methods have been effectively and widely used to determine near-surface shear (S) wave velocity. To image the dispersion energy and identify different dispersive modes of surface waves accurately is one of key steps of using surface-wave methods. We analyzed the dispersion energy characteristics of Rayleigh and Love waves in near-surface layered models based on numerical simulations. It has been found that if there is a low-velocity layer (LVL) in the half-space, the dispersion energy of Rayleigh or Love waves is discontinuous and ‘‘jumping’’ appears from the fundamental mode to higher modes on dispersive images. We introduce the guided waves generated in an LVL (LVL-guided waves, a trapped wave mode) to clarify the complexity of the dispersion energy. We confirm the LVL-guided waves by analyzing the snapshots of SH and P–SV wavefield and comparing the dispersive energy with theoretical values of phase velocities. Results demonstrate that LVL-guided waves possess energy on dispersive images, which can interfere with the normal dispersion energy of Rayleigh or Love waves. Each mode of LVL-guided waves having lack of energy at the free surface in some high frequency range causes the discontinuity of dispersive energy on dispersive images, which is because shorter wavelengths (generally with lower phase velocities and higher frequencies) of LVL-guided waves cannot penetrate to the free surface. If the S wave velocity of the LVL is higher than that of the surface layer, the energy of LVL-guided waves only contaminates higher mode energy of surface waves and there is no interlacement with the fundamental mode of surface waves, while if the S wave velocity of the LVL is lower than that of the surface layer, the energy of LVL-guided waves may interlace with the fundamental mode of surface waves. Both of the interlacements with the fundamental mode or higher mode energy may cause misidentification for the dispersion curves of surface waves.  相似文献   

7.
In seismic exploration, elastic waves are sent to investigate subsurface geology. However, the transmission and interpretation of the elastic wave propagation is complicated by various factors. One major reason is that the earth can be a very complex medium. Nevertheless, in this paper, we model some terrestrial material as an elastic medium consisting of randomly distributed inclusions with a considerable concentration. The waves incident on such an inhomogeneous medium undergo multiple scattering due to the presence of inclusions. Consequently, the wave energy is redistributed thereby reducing the amplitude of the coherent wave.The coherent or average wave is assumed to be propagating in a homogeneous continuum characterized by a bulk complex wavenumber. This wavenumber depends on the frequency of the probing waves; and on the physical properties and the concentration of discrete scatterers, causing the effective medium to be dispersive. With the help of multiple scattering theory, we are able to analytically predict the attenuation of the transmitted wave intensity as well as the dispersion of the phase velocity. These two sets of data are valuable to the study of the inverse scattering problems in seismology. Some numerical results are presented and also compared, if possible, with experimental measurements.  相似文献   

8.
Generalizing previous studies on short-period data, it is shown that body-wave dispersion can be measured from broad-band records of earthquakes of moderate magnitude. The method is based on the direct measurement of the arrival time of the frequency components of a seismic wave, and the arrival time is defined by its expectation value. The frequency components of the signal are obtained through a narrow band-pass filtering process. Previous to any interpretation, a correction of the arrival time for instrument response and group delay of the filter is needed. In the first step, body-wave dispersion is related to an absorption band to account for intrinsic attenuation, and thereafter we generalize this interpretation by considering a cascade of filters to account for medium parameters (attenuation and a layered crust) and source parameters (source time function and finiteness of fault). An inversion scheme to obtain the filter parameters can be devised by following, in a formal way, the same procedure as for the case of surface wave dispersion.  相似文献   

9.
非弹性层状介质地震波频变AVO响应模拟及分析   总被引:3,自引:3,他引:0       下载免费PDF全文
以非弹性层状介质为模型,基于广义传播矩阵理论计算地震波频变反射系数,算法中同时考虑了与频散和衰减有关的地层岩性因素,以及与薄互层有关的地层结构因素.实现了岩石物理模型、反射系数这两个计算过程的"无缝"连接,精确考虑了由复数弹性模量表示的地层非弹性因素,也为在同一反射模型中考虑源于不同物理机制的频散与衰减提供了方法.数值模拟结果验证了算法的有效性和稳定性,计算结果表明,非弹性薄层的反射振幅随频率先增加后减小,不一定表现常规"低频亮点"异常;同时,薄互层条件下的频散与衰减使得地震反射波的频谱以及AVO特征呈现与频率相关的复杂变化.本文完善了频变AVO算法,为含油气储层频变AVO响应的模拟和分析提供了方法.  相似文献   

10.
Marine magnetotelluric measurements using “free‐fall’’ instruments without effective compasses suffer from the problem of unknown orientation of the receivers at the seafloor. While past works indicate that marine magnetotelluric orientation of the instruments can be estimated by reference to land deployments of known orientation using the transfer tensor method, there is limited published information on how this is implemented in practice. We document this method and propose a set of new time‐ and frequency‐domain approaches to solve this orientation problem of the seafloor receivers. We test these methodologies in onshore and offshore magnetotelluric data whose orientations are well known and apply these techniques to marine magnetotelluric data with unknown orientation. For the controlled tests, both time‐ and frequency‐domain approaches produce overall comparable results. To investigate the effects of the subsurface structure distribution on the orientation process, a dimensionality analysis of a controlled dataset is carried out. In subsequent analysis using the available disoriented marine magnetotelluric data from offshore Brazil and from the Vassouras magnetic observatory on the mainland for remote referencing, frequency‐domain methods yield approximate orientation angles among themselves with low standard deviation each. Time‐domain results are consistent for most cases but differ from frequency‐domain results for some situations.  相似文献   

11.
The present paper is concerned with the propagation of shear waves in a homogeneous viscoelastic isotropic layer lying over a semi-infinite heterogeneous viscoelastic isotropic half-space due to point source. The inhomogeneity parameters associated to rigidity, internal friction and density are assumed to be functions of depth. The dispersion equation of shear waves has been obtained using Green’s function technique. The dimensionless angular frequency has been plotted against dimensionless wave number for different values of inhomogeneity parameters. The effects of inhomogeneity have been shown in the dispersion curves. graphical user interface (GUI) software in MATLAB has been developed to show the effect of various inhomogeneity parameters on angular frequency. The topic can be of interest for geophysical applications in propagation of shear waves on the Earth’s crust.  相似文献   

12.
王洪华  王敏玲  张智  刘海 《地球物理学报》2018,61(10):4136-4147

针对Cole-Cole频散介质中的复介电常数是jω的分数次幂函数,传统的时域有限元法难以离散及计算时间域分数阶导数,本文采用Pade逼近算法将含有时间分数阶导数的Cole-Cole频散介质电磁波方程推导为一组整数阶辅助微分方程,提出了一种适用于Cole-Cole频散介质的GPR有限元正演模拟算法.在复数伸展坐标系下,通过在频率域Cole-Cole频散介质电磁波方程中引入2个中间变量,并将其变换到时间域,从而以变分形式将PML边界条件加载到Cole-Cole频散介质GPR有限元方程组中,并给出了详细的求解公式.在此基础上,编制了基于Pade逼近的Cole-Cole频散介质GPR有限元正演程序,利用该程序对均匀模型进行计算,并与解析解进行对比,验证了本文构建的GPR有限元正演算法的正确性和有效性.设计了一个复杂Cole-Cole频散介质GPR模型,利用本文构建的GPR有限元正演算法进行模拟并与非频散介质模型的模拟结果进行对比,分析了电磁波在Cole-Cole频散介质中传播衰减增强、子波延伸,分辨率降低等传播规律,有助于实测雷达资料更可靠、更准确的解释.模拟结果表明,基于Pade逼近的GPR有限元正演算法可用于复杂Cole-Cole频散介质结构模拟,且具有较高的计算精度.

  相似文献   

13.
14.

裂缝广泛分布于各类储层岩石中, 并且会显著提高储层的渗流能力.因此, 裂缝的评价和表征对于提高油气产能具有重要意义.由于裂缝与背景介质之间的波致流会显著影响地震波的频散和衰减特性, 所以地震勘探是评价裂缝性储层的有效手段.裂缝地震定量表征的前提是要基于含裂缝岩石中波致流对频散和衰减的影响建立含裂缝岩石物理特性与地震性质的关系.然而, 目前相关的理论研究大部分基于各向同性背景这一假设, 难以有效应用于常见的各向异性储层.本文针对背景为各向异性的含裂缝岩石提出了频散和衰减的计算方法.该方法首先将含裂缝岩石中的各向异性背景介质等效为层状背景介质; 然后, 通过分析不同频率下层状含裂缝岩石中的流体压力分布, 理论计算了两个特定的中间频率并求解得到两个中间频率下的弹性参数; 进一步, 以计算得到的两个特定中间频率以及高低频极限下的弹性参数为基础, 应用数值方法求解得到弛豫函数中的未知参数, 最终实现了背景为各向异性含裂缝岩石中频散和衰减的理论模拟.通过将理论预测结果与实验测量和数值模拟结果进行对比, 验证了该方法在背景为各向异性含不同分布裂缝岩石中的有效性.本文提出的方法考虑了常见的各向异性背景对含裂缝岩石频散和衰减的影响, 因而在裂缝性储层的地震勘探中具有广泛的应用前景.

  相似文献   

15.
岩石的粘弹性谐振Q模型   总被引:7,自引:2,他引:7       下载免费PDF全文
实验表明,在应变小于10-6范围内,砂岩对地震波的吸收主要由孔隙流体的局部运动引起,而且Q值随频率的变化出现谐振现象。据此,作者认为,地壳上部地震波能量的耗损可以表示为以下两种成分的线性组合:1.由滑动摩擦、热弹性驰豫、位错运动等引起的能量消散,它们主要与岩石的固相成分有关,可近似地用恒Q模型描述;2.由孔隙流体运动引起的能量消散,可以用谐振公式描述。根据这一认识,利用描述因果关系的Kramers-Krnig关系式可推导出表示地壳上部岩石粘弹性(复弹性模量,相速度频散和衰减函数)的公式,它们综合地描述了由各种机制引起的波的频散和吸收,并在谐振Q值等于参考常数Q值时退化为目前常用的Futterman模型。作为这种谐振Q模型的应用,介绍了它用于Q值测量结果外推和频散一吸收研究以及粘弹性介质中反射地震道合成的结果。  相似文献   

16.
杨文采 《地球物理学报》1987,30(04):399-411
实验表明,在应变小于10-6范围内,砂岩对地震波的吸收主要由孔隙流体的局部运动引起,而且Q值随频率的变化出现谐振现象。据此,作者认为,地壳上部地震波能量的耗损可以表示为以下两种成分的线性组合:1.由滑动摩擦、热弹性驰豫、位错运动等引起的能量消散,它们主要与岩石的固相成分有关,可近似地用恒Q模型描述;2.由孔隙流体运动引起的能量消散,可以用谐振公式描述。根据这一认识,利用描述因果关系的Kramers-Krnig关系式可推导出表示地壳上部岩石粘弹性(复弹性模量,相速度频散和衰减函数)的公式,它们综合地描述了由各种机制引起的波的频散和吸收,并在谐振Q值等于参考常数Q值时退化为目前常用的Futterman模型。作为这种谐振Q模型的应用,介绍了它用于Q值测量结果外推和频散一吸收研究以及粘弹性介质中反射地震道合成的结果。  相似文献   

17.
—An algorithm has been developed to compute the dispersive and dissipative seismic response using FUTTERMAN’S (1962) third attenuation-dispersion relationship. In the computation, frequency-dependent velocity and quality factor Q have been used but in the case of the nondispersive synthetic seismogram, frequency-independent velocity has been used. The model’s parameters are density, phase velocity, quality factors and thicknesses of the layers. Dispersive and nondispersive synthetic seismograms have been computed with and without absorption for a layered earth geological model. Fast Fourier transform (FFT) technique has been adopted for converting the frequency domain response into the time domain. The frequency spacing, Δf = 0.976?Hz, has been considered to avoid the aliasing effect. The results have revealed changes in the reflected waveforms in the frequency domain as well as in the time domain for absorption and dispersion cases. It is also concluded that dispersion reduces the arrival time and this effect is increasing with the travel time. The effect of constant Q on the seismic response has also been studied.  相似文献   

18.
Theoretical model study shows that when an earth model is composed of two (Cole-Cole) polarizable media, its normalized complex resistivity spectrum is approximately a multiplicative combination of the contributions of the two media. This also applies on inversion, but the two dispersions thus obtained are apparent rather than intrinsic dispersions. In models consisting of two media, either a multiplicative or an additive combination of Cole-Cole functions fits the complex apparent resistivity spectrum. On inversion each combination gives similar parameters except for the apparent chargeability of the component with the shorter time constant. However, this can be compensated simply. In this sense the two representations are almost equivalent. We show that the apparent spectrum due to a finite polarizable body is actually a true Cole-Cole dispersion, as is usually assumed in practice. The behavior of a complex apparent resistivity spectrum and its corresponding apparent Cole-Cole dispersion parameters is influenced by the variation of the dilution factor with frequency. Hence when estimating intrinsic parameters from the nomogram, based on constant (frequency-independent) dilution factors, particular care is required to correctly relate apparent parameters to intrinsic parameters.  相似文献   

19.
Multichannel Analysis of Surface Waves (MASW) analysis is an efficient tool to obtain the vertical shear-wave profile. One of the key steps in the MASW method is to generate an image of dispersive energy in the frequency-velocity domain, so dispersion curves can be determined by picking peaks of dispersion energy. In this paper, we propose to image Rayleigh-wave dispersive energy by high-resolution linear Radon transform (LRT). The shot gather is first transformed along the time direction to the frequency domain and then the Rayleigh-wave dispersive energy can be imaged by high-resolution LRT using a weighted preconditioned conjugate gradient algorithm. Synthetic data with a set of linear events are presented to show the process of generating dispersive energy. Results of synthetic and real-world examples demonstrate that, compared with the slant stacking algorithm, high-resolution LRT can improve the resolution of images of dispersion energy by more than 50%.  相似文献   

20.
Wave‐induced fluid flow at microscopic and mesoscopic scales arguably constitutes the major cause of intrinsic seismic attenuation throughout the exploration seismic and sonic frequency ranges. The quantitative analysis of these phenomena is, however, complicated by the fact that the governing physical processes may be dependent. The reason for this is that the presence of microscopic heterogeneities, such as micro‐cracks or broken grain contacts, causes the stiffness of the so‐called modified dry frame to be complex‐valued and frequency‐dependent, which in turn may affect the viscoelastic behaviour in response to fluid flow at mesoscopic scales. In this work, we propose a simple but effective procedure to estimate the seismic attenuation and velocity dispersion behaviour associated with wave‐induced fluid flow due to both microscopic and mesoscopic heterogeneities and discuss the results obtained for a range of pertinent scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号