首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fe‐Ni metal is a common constituent of most meteorites and is an indicator of the thermal history of the respective meteorites, it is a diagnostic tool to distinguish between groups/subgroups of meteorites. In spite of over a million micrometeorites collected from various domains, reports of pure metallic particles among micrometeorites have been extremely rare. We report here the finding of a variety of cosmic metal particles such as kamacite, plessite, taenite, and Fe‐Ni beads from deep‐sea sediments of the Indian Ocean, a majority of which have entered the Earth unaffected by frictional heating during atmospheric entry. Such particles are known as components of meteorites but have never been found as individual entities. Their compositions suggest precursors from a variety of meteorite groups, thus providing an insight into the metal fluxes on the Earth. Some particles have undergone heating and oxidation to different levels during entry developing features similar to I‐type cosmic spherules, suggesting atmospheric processing of individual kamacites/taenite grains as another hitherto unknown source for the I‐type spherules. The particles have undergone postdepositional aqueous alteration transforming finally into the serpentine mineral cronstedtite. Aqueous alteration products of kamacite reflect the local microenvironment, therefore they have the potential to provide information on the composition of water in the solar nebula, on the parent bodies or on surfaces of planetary bodies. Our observations suggest it would take sustained burial in water for tens of thousands of years under cold conditions for kamacites to alter to cronstedtite.  相似文献   

2.
Abstract— We present noble gas analyses of sediment‐dispersed extraterrestrial chromite grains recovered from ?470 Myr old sediments from two quarries (Hällekis and Thorsberg) and of relict chromites in a coeval fossil meteorite from the Gullhögen quarry, all located in southern Sweden. Both the sediment‐dispersed grains and the meteorite Gullhögen 001 were generated in the L‐chondrite parent body breakup about 470 Myr ago, which was also the event responsible for the abundant fossil meteorites previously found in the Thorsberg quarry. Trapped solar noble gases in the sediment‐dispersed chromite grains have partly been retained during ?470 Myr of terrestrial residence and despite harsh chemical treatment in the laboratory. This shows that chromite is highly retentive for solar noble gases. The solar noble gases imply that a sizeable fraction of the sediment‐dispersed chromite grains are micrometeorites or fragments thereof rather than remnants of larger meteorites. The grains in the oldest sediment beds were rapidly delivered to Earth likely by direct injection into an orbital resonance in the inner asteroid belt, whereas grains in younger sediments arrived by orbital decay due to Poynting‐Robertson (P‐R) drag. The fossil meteorite Gullhögen 001 has a low cosmic‐ray exposure age of ?0.9 Myr, based on new He and Ne production rates in chromite determined experimentally. This age is comparable to the ages of the fossil meteorites from Thorsberg, providing additional evidence for very rapid transfer times of material after the L‐chondrite parent body breakup.  相似文献   

3.
Because of their short cosmic ray exposure ages, chondritic meteorites are more likely to have been broken off from parent bodies in Earth-crossing orbits than from parent bodies in the asteroid belt. The radii of the objects now in the vicinity of the Earth (Apollo and Amor objects) are too small to be unfragmented asteroids of the theory for the origin of gas-rich meteorites of Anders. Because of the abundant evidence for very heavy shock and reheating among L- and H-chondrites, I conclude that the asteroidal origin for the ordinary chondrites is still the most likely. A cometary origin for the CI chondrites is examined. Regolith and megaregolith do not necessarily have to be formed by impacts on the cometary nucleus. The short-period comet Encke receives about 1/10 the solar-wind flux of a belt asteroid at 2.5 AU in its present orbit. The thickness of the megaregolith (C1 chondrites) is estimated between 0.1 and 0.3 km. Stirring of the megaregolith without substantial loss of dust from the comet might occur when the comet is transitional between “active” and “dead.” The consolidation of C1- “dust” into rock is somewhat problematic, but if liquid water and water vapor have played a role, then a crust rich in solar gases might form in the outer regions of a comet. A testable alternative explanation is suggested, namely that the solar gases in the C1 chondrites do not come from the Sun.  相似文献   

4.
Abstract— The He, Ne, and Ar compositions of 32 individual interplanetary dust particles (IDPs) were measured using low‐blank laser probe gas extraction. These measurements reveal definitive evidence of space exposure. The Ne and Ar isotopic compositions in the IDPs are primarily a mixture between solar wind (SW) and an isotopically heavier component dubbed “fractionated solar” (FS), which could be implantation‐fractionated solar wind or a distinct component of the solar corpuscular radiation previously identified as solar energetic particles (SEP). Space exposure ages based on the Ar content of individual IDPs are estimated for a subset of the grains that appear to have escaped significant volatile losses during atmosphere entry. Although model‐dependent, most of the particles in this subset have ages that are roughly consistent with origin in the asteroid belt. A short (<1000 years) space exposure age is inferred for one particle, which is suggestive of cometary origin. Among the subset of grains that show some evidence for relatively high atmospheric entry heating, two possess elevated 21Ne/22Ne ratios generated by extended exposure to solar and galactic cosmic rays. The inferred cosmic ray exposure ages of these particles exceeds 107 years, which tends to rule out origin in the asteroid belt. A favorable possibility is that these 21Ne‐rich IDPs previously resided on a relatively stable regolith of an Edgeworth‐Kuiper belt or Oort cloud body and were introduced into the inner solar system by cometary activity. These results demonstrate the utility of noble gas measurements in constraining models for the origins of interplanetary dust particles.  相似文献   

5.
Abstract— We have developed a nebular condensation model and a computational routine that potentially can account for the unequilibrated mineral assemblages in chondritic meteorites. The model assumes that as condensation proceeds, a specified fraction (called the isolation degree, ξ) of the existing condensate is steadily withdrawn from reactive contact with the residual gas, presumably as a result of the growth and aggregation of condensed mineral grains. The isolated condensates may remain in the condensing system as coarse inert objects; whereas, the mineral grains that are still in reactive contact with residual nebular gases are in the form of fine dust. This paper describes the condensation with partial isolation (CWPI) model of condensation and uses it to study condensation in a nebula of solar composition at a total pressure of 10?5 bar. The systematic isolation of condensates from residual nebular gases has profound effects on the condensation sequence. At ξ values <0.2%, the condensation sequence is essentially independent of the isolation degree and identical to the classic condensation sequence. At ξ values >2.5%, the condensation sequence is also independent of the isolation degree and closely resembles the “inhomogeneous accretion model” or “chemical disequilibrium model” of condensation. In the intermediate range of ξ values, the character of the condensation sequence is very sensitive to the degree of chemical fractionation caused by condensate isolation. The mineralogy of chondritic meteorites is not consistent with condensation sequences having ξ > 2.5; this is an upper limit on the ξ values that is characteristic of condensation in the solar nebula. The mineralogy and chemistry of carbonaceous and enstatite chondrites can be explained by accretion of isolated condensates formed at ξ values of ≤0.1% and 0.7–1.5%, respectively, providing that segregation of the inert coarse objects and fine reactive dust occurred in the nebula. Segregation of these two categories of condensate may have been responsible for the observed volatility-based chemical fractionations among chondritic meteorites.  相似文献   

6.
Abstract— Over 100 000 large interplanetary dust particles in the 50–500 μm size range have been recovered in clean conditions from ~600 tons of Antarctic melt ice water as both unmelted and partially melted/dehydrated micrometeorites and cosmic spherules. Flux measurements in both the Greenland and Antarctica ice sheets indicate that the micrometeorites deliver to the Earth's surface ~2000× more extraterrestrial material than brought by meteorites. Mineralogical and chemical studies of Antarctic micrometeorites indicate that they are only related to the relatively rare CM and CR carbonaceous chondrite groups, being mostly chondritic carbonaceous objects composed of highly unequilibrated assemblages of anhydrous and hydrous minerals. However, there are also marked differences between these two families of solar system objects, including higher C/O ratios and a very marked depletion of chondrules in micrometeorite matter; hence, they are “chondrites-without-chondrules.” Thus, the parent meteoroids of micrometeorites represent a dominant and new population of solar system objects, probably formed in the outer solar system and delivered to the inner solar system by the most appropriate vehicles, comets. One of the major purposes of this paper is to discuss applications of micrometeorite studies that have been previously presented to exobiologists but deal with the synthesis of prebiotic molecules on the early Earth, and more recently, with the early history of the solar system.  相似文献   

7.
The study of micrometeorites which reach the Earth and of cosmic dust in general in inter-planetary space and in a planet's atmosphere may contribute significantly to the resolution of important astrophysical and geophysical problems, such as the origin and evolution of our solar system and the universe, and the problem of medium range weather forecasting (for about one month), in addition to the practical problem of NASA's “Man in Space” Programme. In this paper, the questions related to the fall of matter of cosmic origin on Earth, a possible mechanism for the capture of micrometeoric particles by the Earth and other planets of the solar system, indicated by the author, will be dealt with.  相似文献   

8.
J.N. Goswami  D. Lal 《Icarus》1979,40(3):510-521
We have carried out extensive particle track studies for several C2 chondrites. On the basis of these and the available data on spallogenic stable and radioactive nuclides in several C1 and C2 chondrites, we have constructed a scenario for the precompaction irradiation of these meteorites. We discuss the rather severe constraints which these data place on the events leading to the formation of the parent bodies of the carbonaceous chondrites. Our analyses suggest that the precompaction solar flare and solar wind irradiation of the individual components most probably occurred primarily while the matter had accreted to form swarms of centimeter- to meter-sized bodies. This irradiation occured very early, within a few hundred my of the birth of the solar system; the pressure in the solar system had then dropped below 10?9 atm. Further, the model assumes that soon after the irradiation of carbonaceous matter as swarms, the small bodies coalesced to form kilometer-sized objects, in time scales of 105±1 years, a constraint defined by the low cosmogenic exposure ages of these meteorites. Collisions among these objects led to the formation of much-larger-sized parent bodies of the carbonaceous chondrites. Implicit in this model is the existence of “irradiated” components at all depths in the parent bodies, which formed out of the irradiated swarm material.  相似文献   

9.
Abstract— We derived the cosmic‐ray and solar particle exposure history for the two lunar meteorites Elephant Moraine (EET) 96008 and Dar al Gani (DaG) 262 on the basis of the noble gas isotopic abundances including the radionuclide 81Kr. For EET 96008, we propose a model for the exposure to cosmic rays and solar particles in three stages on the Moon: an early stage ~500 Ma ago, lasting less than 9 Ma at a shallow shielding depth of 20 g/cm2, followed by a stage when the material was buried, without exposure, until it was exposed in a recent stage. This recent stage, at a shielding depth in a range of 200–600 g/cm2, lasted for ~26 Ma until ejection. This model is essentially the same as that previously found for lunar meteorite EET 87521; thus, pairing of the two Elephant Moraine lunar meteorites that were recovered on the same icefield in Antarctica is confirmed by our data. The cosmic‐ray‐produced isotopes, the trapped solar and lunar atmospheric noble gases, as well as the radionuclide 81Kr observed for the DaG 262 lunar meteorite are consistent with a one‐stage lunar exposure history. The average burial depth of the Dar al Gani material before ejection was within a range of 50–80 g/cm2. The exposure to cosmic rays at this depth lasted 500–1000 Ma. This long residence time for Dar al Gani at relatively shallow depth explains the high concentrations of implanted solar noble gases.  相似文献   

10.
Abstract— Primitive meteorites contain a few parts per million (ppm) of pristine interstellar grains that provide information on nuclear and chemical processes in stars. Their interstellar origin is proven by highly anomalous isotopic ratios, varying more than 1000-fold for elements such as C and N. Most grains isolated thus far are stable only under highly reducing conditions (C/O > 1), and apparently are “stardust” formed in stellar atmospheres. Microdiamonds, of median size ~ 10 Å, are most abundant (~ 400–1800 ppm) but least understood. They contain anomalous noble gases including Xe-HL, which shows the signature of the r- and p-processes and thus apparently is derived from supernovae. Silicon carbide, of grain size 0.2–10 μm and abundance ~ 6 ppm, shows the signature of the s-process and apparently comes mainly from red giant carbon (AGB) stars of 1–3 solar masses. Some grains appear to be ≥109 a older than the Solar System. Graphite spherules, of grain size 0.8–7 μm and abundance <2 ppm, contain highly anomalous C and noble gases, as well as large amounts of fossil 26Mg from the decay of extinct 26Al. They seem to come from at least three sources, probably AGB stars, novae, and Wolf-Rayet stars.  相似文献   

11.
The author carried out a study of pulverised cosmic matter extracted from the soil at the fall locality of the Sikhote Alin iron meteorite shower. Three forms of dust were distinguishable: meteoritic, sharp-angled, irregular particles from the break-up of the meteorite; meteoric, spherical, magnetic particles from ablation; and micro meteorites. Meteoritic and meteoric dust was also discovered in the soil of the regions of fall of the Boguslavka and Yardymly iron meteorites. Experiments made by the author for the purpose of obtaining artificial meteoric dust from meteoritic matter of various types have shown that the meteoric dust obtained from stony meteorites is composed of spherules similar to those extracted from the soil in the areas of fall of the Sikhote Alin, Boguslavka and Yardymly iron meteorites. Cosmic dust, the particles of which are usually called micrometeorites, due to their small size, are not subjected to the influence of temperature as they pass through the Earth's atmosphere and they reach the Earth's surface unaltered. It is proposed that meteoric and cosmic dust comprises the largest part of the cosmic matter falling onto the Earth:  相似文献   

12.
Abstract— We explore the orbital dynamics of Earth‐crossing objects with the intent to understand the time scales under which an “orbital stream” of material could produce time‐correlated meteorite falls. These “meteoroid streams” have been suggested to be associated with three well‐known meteorite‐dropping fireballs (Innisfree, Peekskill, and P?íbram). We have performed two different analyses of the statistical significance of the “orbital similarity,” in particular calculating how often orbits of the same level of similarity would come from a random sample. Secondly, we have performed extremely detailed numerical integrations related to these three cases, and we find that if they were streams of objects in similar orbits, then they would become “decoherent” (in the sense that the day‐of‐fall of meteorites of these streams become almost random) on time scales of 104–105 yr. Thus, an extremely recent breakup would be required, much more recent that the cosmic ray exposure ages of the recovered falls in each case. We conclude that orbital destruction is too efficient to allow the existence of long‐lived meteoroid streams and that the statistical evidence for such streams is insufficient; random fall patterns show comparable levels of clustering.  相似文献   

13.
Abstract– Neon was measured in 39 individual olivine (or olivine‐rich) grains separated from individual chondrules from Dhajala, Bjurböle, Chainpur, Murchison, and Parsa chondrites with spallation‐produced 21Ne the result of interaction of energetic particle irradiation. The apparent 21Ne cosmic ray exposure (CRE) ages of most grains are similar to those of the matrix with the exception of three grains from Dhajala and single grains from Bjurböle and Chainpur, which show excesses, reflecting exposure to energetic particles prior to final compaction of the object. Among these five grains, one from chondrule BJ2A5 of Bjurböle shows an apparent excess exposure age of approximately 20 Ma and the other four from Dhajala and Chainpur have apparent excesses, described as an “age,” from 2 to 17 Ma. The precompaction irradiation effects of grains from chondrules do not appear to be different from the effects seen in olivine grains extracted from the matrix of CM chondrites. As was the case for the matrix grains, there appears to be insufficient time for this precompaction irradiation by the contemporary particle sources. The apparent variations within single chondrules appear to constrain precompaction irradiation effects to irradiation by lower energy solar particles, rather than galactic cosmic rays, supporting the conclusion derived from the precompaction irradiation effects in CM matrix grains, but for totally different reasons. This observation is consistent with Chandra X‐Ray Observatory data for young low‐mass stars, which suggest that our own Sun may have been 105 times more active in an early naked T‐Tauri phase ( Feigelson et al. 2002 ).  相似文献   

14.
The use of thermoluminescence (TL) to determine the terrestrial age of meteorites is investigated. It is found that meteorites can be divided into two groups. One group, in which members lose their low temperature TL rather rapidly (the “low retentivity” group), may be dated up to about 100 years after fall, although with little accuracy. The other (the “high” group) is more retentive, and may still be dated several hundred years after fall. A meteorite of unknown date of fall may be assigned to the high or low group by laboratory determination of the rate of decay of the low temperature TL. Weathering coats the grains with limonite and lowers the intensity of the TL. The percentage reduction is constant for various intensities, but the peak height ratio is changed. Therefore, for weathered specimens, a method which examines the decrease in the intensity of a single peak is preferred to one which depends upon peak height ratios: this is made possible by artificially irradiating the meteorites. The following terrestrial ages for finds were obtained: Plainview 225–300 years; Dimmitt 280–330 years; Calliham 350–400 years. Bluff, Etter, Potter, Shields and Wellman (c) proved to be too old to be dated by our methods (≥ 500 years). None of the low group finds available to us proved to be young enough to be dated precisely. Terrestrial ages indicate an extremely low efficiency of recovery (≤ 1%) for meteorites that are not seen to fall. Artificially irradiating the meteorites also revealed the fact that 9 of our 19 meteorites were saturated with respect to thermoluminescence when they entered the atmosphere, and therefore that a technique based on this phenomenon would not be applicable to such specimens to obtain their cosmic ray exposure age.  相似文献   

15.
We measured concentrations and isotopic ratios of noble gases in the Rumuruti (R) chondrite Mount Prestrud (PRE) 95410, a regolith breccia exhibiting dark/light structures. The meteorite contains solar and cosmogenic noble gases. Based on the solar and cosmogenic noble gas compositions, we calculated a heliocentric distance of its parent body, a cosmic‐ray exposure age on the parent body regolith (parent body exposure age), and a cosmic‐ray exposure age in interplanetary space (space exposure age) of the meteorite. Assuming a constant solar wind flux, the estimated heliocentric distance was smaller than 1.4 ± 0.3 au, suggesting inward migration from the asteroid belt regions where the parent body formed. The largest known Mars Trojan 5261 Eureka is a potential parent body of PRE 95410. Alternatively, it is possible that the solar wind flux at the time of the parent body exposure was higher by a factor of 2–3 compared to the lunar regolith exposure. In this case, the estimated heliocentric distance is within the asteroid belt region. The parent body exposure age is longer than 19.1 Ma. This result indicates frequent impact events on the parent body like that recorded for other solar‐gas‐rich meteorites. Assuming single‐stage exposure after an ejection event from the parent body, the space exposure age is 11.0 ± 1.1 Ma, which is close to the peak of ~10 Ma in the exposure age distribution for the solar‐gas‐free R chondrites.  相似文献   

16.
We analyzed He and Ne in chromite grains from the regolith breccia Ghubara (L5), to compare it with He and Ne in sediment‐dispersed extraterrestrial chromite (SEC) grains from mid‐Ordovician sediments. These SEC grains arrived on Earth as micrometeorites in the aftermath of the L chondrite parent body (LCPB) breakup event, 470 Ma ago. A significant fraction of them show prolonged exposure to galactic cosmic rays for up to several 10 Ma. The majority of the cosmogenic noble gases in these grains were probably acquired in the regolith of the LCPB (Meier et al. 2010 ). Ghubara, an L chondritic regolith breccia with an Ar‐Ar shock age of 470 Ma, is a sample of that regolith. We find cosmic‐ray exposure ages of up to several 10 Ma in some Ghubara chromite grains, confirming for the first time that individual chromite grains with such high exposure ages indeed existed in the LCPB regolith, and that the >10 Ma cosmic‐ray exposure ages found in recent micrometeorites are thus not necessarily indicative of an origin in the Kuiper Belt. Some Ghubara chromite grains show much lower concentrations of cosmogenic He and Ne, indicating that the 4π (last‐stage) exposure age of the Ghubara meteoroid lasted only 4–6 Ma. This exposure age is considerably shorter than the 15–20 Ma suggested before from bulk analyses, indicating that bulk samples have seen regolith pre‐exposure as well. The shorter last‐stage exposure age probably links Ghubara to a small peak of 40Ar‐poor L5 chondrites of the same exposure age. Furthermore, and quite unexpectedly, we find a Ne component similar to presolar Ne‐HL in the chromite grains, perhaps indicating that some presolar Ne can be preserved even in meteorites of petrologic type 5.  相似文献   

17.
Abstract— We report mass‐spectrometric measurements of light noble gases pyrolytically extracted from 28 interplanetary dust particles (IDPs) and discuss these new data in the context of earlier analyses of 44 IDPs at the University of Minnesota. The noble gas database for IDPs is still very sparse, especially given their wide mineralogic and chemical variability, but two intriguing differences from isotopic distributions observed in lunar and meteoritic regolith grains are already apparent. First are puzzling overabundances of 3He, manifested as often strikingly elevated 3He/4He ratios—up to >40x the solar‐wind value—‐and found primarily but not exclusively in shards of some of the larger IDPs (“cluster particles”) that fragmented on impact with the collectors carried by high‐altitude aircraft. It is difficult to attribute these high ratios to 3He production by cosmic‐ray‐induced spallation during estimated space residence times of IDPs, or by direct implantation of solar‐flare He. Minimum exposure ages inferred from the 3He excesses range from ~50 Ma to an impossible >10 Ga, compared to Poynting‐Robertson drag lifetimes for low‐density 20–30 μm particles on the order of ~0.1 Ma for an asteroidal source and ~10 Ma for origin in the Kuiper belt. The second difference is a dominant contribution of solar‐energetic‐particle (SEP) gases, to the virtual exclusion of solar‐wind (SW) components, in several particles scattered throughout the various datasets but most clearly and consistently observed in recent measurements of a group of individual and cluster IDPs from three different collectors. Values of the SEP/SW fluence ratio in interplanetary space from a simple model utilizing these data are ~1% of the relative SEP/SW abundances observed in lunar regolith grains, but still factors of approximately 10–100 above estimates for this ratio in low‐energy solar particle emission.  相似文献   

18.
Abstract— High‐resolution transmission electron microscopy micrographs of acid‐resistant residues of the Allende, Leoville, and Vigarano meteorites show a great variety of carbon structures: curved and frequently twisted and intertwined graphene sheets, abundant carbon black‐like particles, and hollow “sacs”. It is suggested that perhaps all of these are carriers for the planetary Q‐noble gases in these meteorites. Most of these materials are pyrocarbons that probably formed by the pyrolysis of hydrocarbons either in a gas phase, or on hot surfaces of minerals. An attempt was made to analyze for argon with particle‐induced x‐ray emission in 143 spots of grains of floating and suspended matter from freeze‐dry cycles of an Allende bulk sample in water, and floating “black balls” from sonication in water of samples from the Allende meteorite. The chemical compositions of these particles were obtained, but x‐ray signals at the wavelength of argon were obtained on only a few spots.  相似文献   

19.
Abstract— We report the first measurements of lithium and boron isotope ratios and abundances measured in “gently separated” presolar SiC grains. Almost all analyses of presolar SiC grains since their first isolation in 1987 have been obtained from grains that were separated from their host meteorite by harsh acid dissolution. We recently reported a new method of “gently” separating the grains from meteorites by using freeze‐thaw disaggregation, size, and density separation to retain any nonrefractory coatings or alteration to the surfaces of the grains that have been acquired in interstellar space. Nonrefractory coats or amorphized surfaces will almost certainly be removed or altered by the traditional acid separation procedure. High Li/Si and B/Si ratios of up to ~10?2 were found implanted in the outer 0.5 μm of the grains dropping to ~10?5 in the core of the grains. 7Li/6Li and 11B/10B ratios indistinguishable from solar system average values were found. Analyses obtained from SiC grains from the acid dissolution technique showed isotope ratios that were the same as those of gently separated grains, but depth profiles that were different. These results are interpreted as evidence of implantation of high velocity (1200–1800 km s?1) Li and B ions into the grains by shock waves as the grains traveled through star‐forming regions some time after their condensation in the outflow of an AGB star that was their progenitor. The results are in line with spectroscopic measurements of Li and B isotope ratios in star‐forming regions and may be used to infer abundances and isotopic sources in these regions.  相似文献   

20.
Abstract— Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contains excess concentrations of cosmogenic Ne in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic cosmic-ray proton (GCR) irradiation or from a greatly enhanced flux of energetic solar “cosmic-ray” protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne/22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Ma. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3–6 Ma, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar particle fluxes. Thus, this study indicates that our early Sun was much more active and emitted a substantially higher flux of energetic (>10 MeV/nucleon) protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号