首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Open‐framework gravel (OFG) in river deposits is important because of its exceptionally high permeability, resulting from the lack of sediment in the pore spaces between the gravel grains. Fluvial OFG occurs as planar strata and cross strata of varying scale, and is interbedded with sand and sandy gravel. The origin of OFG has been related to: (1) proportion of sand available relative to gravel; (2) separation of sand from gravel during a specific flow stage and sediment transport rate (either high, falling or low); (3) separation of sand from gravel in bedforms superimposed on the backs of larger bedforms; (4) flow separation in the lee of dunes or unit bars. Laboratory flume experiments were undertaken to test and develop these theories for the origin of OFG. Bed sediment size distribution (sandy gravel with a mean diameter of 1·5 mm) was kept constant, but flow depth, flow velocity and aggradation rate were varied. Bedforms produced under these flow conditions were bedload sheets, dunes and unit bars. The fundamental cause of OFG is the sorting of sand from gravel associated with flow separation at the crest of bedforms, and further segregation of grain sizes during avalanching on the steep lee side. Sand in transport near the bed is deposited in the trough of the bedform, whereas bed‐load gravel avalanches down the leeside and overruns the sand in the trough. The effectiveness of this sorting mechanism increases as the height of the bedform increases. Infiltration of sand into the gravel framework is of minor importance in these experiments, and occurs mainly in bedform troughs. The geometry and proportion of OFG in fluvial deposits are influenced by variation in height of bedforms as they migrate, superposition of small bedforms on the backs of larger bedforms, aggradation rate, and changes in sediment supply. If the height of a bedform increases as it migrates downstream, so does the amount of OFG. Changes in the character of OFG on the lee‐side of unit bars depend on grain‐size sorting in the superimposed bedforms (dunes and bedload sheets). Thick deposits of cross‐stratified OFG require high bedforms (dunes, unit bars) and large amounts of aggradation. These conditions might be expected to occur during high falling stages in the deeper parts of river channels adjacent to compound‐bar tails and downstream of confluence scours. Increase in the amount of sand supplied relative to gravel reduces the development of OFG. Such increases in sand supply may be related to falling flow stage and/or upstream erosion of sandy deposits.  相似文献   

3.
Current understanding of bedform dynamics is largely based on field and laboratory observations of bedforms in steady flow environments. There are relatively few investigations of bedforms in flows dominated by unsteadiness associated with rapidly changing flows or tides. As a consequence, the ability to predict bedform response to variable flow is rudimentary. Using high‐resolution multibeam bathymetric data, this study explores the dynamics of a dune field developed by tidally modulated, fluvially dominated flow in the Fraser River Estuary, British Columbia, Canada. The dunes were dominantly low lee angle features characteristic of large, deep river channels. Data were collected over a field ca 1·0 km long and 0·5 km wide through a complete diurnal tidal cycle during the rising limb of the hydrograph immediately prior to peak freshet, yielding the most comprehensive characterization of low‐angle dunes ever reported. The data show that bedform height and lee angle slope respond to variable flow by declining as the tide ebbs, then increasing as the tide rises and the flow velocities decrease. Bedform lengths do not appear to respond to the changes in velocity caused by the tides. Changes in the bedform height and lee angle have a counterclockwise hysteresis with mean flow velocity, indicating that changes in the bedform geometry lag changes in the flow. The data reveal that lee angle slope responds directly to suspended sediment concentration, supporting previous speculation that low‐angle dune morphology is maintained by erosion of the dune stoss and crest at high flow, and deposition of that material in the dune trough.  相似文献   

4.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

5.
沙丘背风侧气流及其沉积类型与意义   总被引:6,自引:2,他引:6  
哈斯  王贵勇  董光荣 《沉积学报》2001,19(1):96-100,124
在腾格里沙漠东南缘对现代沙丘表面气流、沉积过程的野外观测结果表明,由于区域气流、沙丘形态及其相互作用等的不同使沙丘背风坡气流发生变化,在此发现三种背风坡次生气流 :分离流、附体未偏向流和附体偏向流。前者以弱的反向流为特征多发生在横向气流条件下坡度较陡的背风坡;后二者具有相对高的风速,其中附体流多发生在坡度缓和的背风坡,其方向在横向气流条件下保持原来的方向,而在斜向气流作用下发生偏转且其强度为原始风入射角的余弦函数。根据背风坡气流方向及强度,作者阐述了不同区域气流环境中沙丘背风坡沉积过程、层理类型及特征,探讨了交错层产状与区域气流方向之间的关系.  相似文献   

6.
Gravel antidunes in the tropical Burdekin River, Queensland, Australia   总被引:4,自引:0,他引:4  
The geological record is punctuated by the deposits of extreme event phenomena, the identification and interpretation of which are hindered by a lack of data on contemporary examples. It is impossible to directly observe sedimentary bedforms and grain fabrics forming under natural particle-transporting, high-velocity currents, and therefore, their characteristics are poorly documented. The deposits of such flows are exposed however, in the dry bed of the Burdekin River, Queensland, Australia following tropical cyclone-induced floods. Long wave-length (up to 19 m) gravel antidunes develop during short (days) high-discharge flows in the upper Burdekin River (maximum recorded discharge near the study reach over 25 600 m3 s?1 in February 1927). Flood water levels fall quickly (metres in a day) and flow is diverted away from raised areas of the river bed into subchannels, exposing many of the high-stage bedforms with little reworking by falling-stage currents. Gravel bedforms were observed on the dry river bed after the moderate flows of February 1994 (max. 7700 m3 s?1) and January 1996 (max. 3200 m3 s?1). The bedforms had wave-lengths in the range 8–19 m, amplitudes of up to 1 m with steeper stoss than lee faces and crest lines generally transverse to local peak-discharge flow direction. The gravel fabric and size sorting change systematically up the stoss and down the lee faces. The antidune deposits form erosive based lenses of sandy gravel with low-angle downstream dipping lamination and generally steep upstream dipping a-b planes. The internal form and fabric of the antidune gravel lenses are distinctly different from those of dune lee gravel lenses. The erosive based lenses of low-angle cross-bedded gravel with steep upstream dipping a-b planes are relatively easy to recognize and may be diagnostic of downstream migrating antidunes. The antidune gravel lenses are associated with thick (to 1 m) high-angle cross bed sets. Ancient antidune gravel lenses may be diagnostic of episodic high-discharge conditions and particularly when they are associated with high-angle cross-bedded gravelly sand they may be useful for palaeoenvironmental interpretation.  相似文献   

7.
For more than a century geologists have wondered why some bedforms are orientated roughly transverse to flow, whereas others are parallel or oblique to flow. This problem of bedform alignment was studied experimentally using subaqueous dunes on a 3–6-m-diameter sand-covered turntable on the floor of a 4-m-wide flume. In each experiment, two flow directions (relative to the bed) were produced by alternating the turntable between two orientations. The turntable was held in each orientation for a short time relative to the reconstitution time of the bedforms; the resulting bedforms were in equilibrium with the time-averaged conditions of the bimodal flows. Dune alignment was studied for five divergence angles (the angle between the two flow directions): 45°, 67–5°, 90°, 112–5° and 135°. The flow depth during all experiments was approximately 30 cm; mean velocity was approximately 50 cm s-1 and mean grain diameter was 0–6 mm. Each experiment continued for 30–75 min, during which time the flume flow was steady and the turntable position changed every 2 min. At the end of each experiment, water was slowly drained from the flume and dune alignment was measured. Transverse dunes (defined relative to the resultant transport direction) were created when the divergence angle was 45° and 67–5°, and longitudinal dunes were created when the divergence angle was 135°. At intermediate divergence angles, dunes with both orientations were produced, but transverse dunes were dominant at 90°, and longitudinal dunes were dominant at 112–5°. One experiment was conducted with a divergence angle of 135° and with unequal amounts of transport in the two flow directions. This was achieved by changing the orientation of the turntable at unequal time intervals, thereby causing the amount of transport to be unequal in the two directions. The dunes formed during this experiment were oblique to the resultant transport direction. These experimental dunes follow the same rule of alignment as wind ripples studied in previous turntable experiments. In both sets of experiments, the bedforms developed with the orientation having the maximum gross bedform-normal transport (the orientation at which the sum of the bedform-normal components of the two transport vectors reaches its maximum value). In other words, the bedforms develop with an orientation that is as transverse as possible to the two flows. In those cases where the two flows diverge by more than 90° and transport equal amounts of sand, bedforms that are as transverse as possible to the two separate flows will be parallel to the resultant of the two flow vectors. Although such bedforms have been defined by previous work as longitudinal bedforms, they are intrinsically the same kind of bedform as transverse bedforms.  相似文献   

8.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

9.
A distinct suite of sand bedforms has been observed to occur in laboratory flows with limited sand supply. As sand supply to the bed progressively increases one observes sand ribbons, discrete barchans and, eventually, channel spanning dunes; but there are relatively few observations of this sequence from natural river channels. Furthermore, there are few observations of transitions from limited sand supply to abundant supply in the field. Bedforms developed under limited, but increasing, sand supply downstream of the abrupt gravel–sand transition in the Fraser River, British Columbia, are examined using multi‐beam swath‐bathymetry obtained at high flow. This is an ideal location to study supply‐limited bedforms because, due to a break in river slope, sand transitions from washload upstream of the gravel–sand transition to bed material load downstream. Immediately downstream, barchanoid and isolated dunes are observed. Most of the bedform field has gaps in the troughs, consistent with sand moving over a flat immobile or weakly mobile gravel bed. Linear, alongstream bedform fields (trains of transverse dunes formed on locally thick, linear deposits of sand) exhibit characteristics of sand ribbons with superimposed bedforms. Further downstream, channel spanning dunes develop where the bed is composed entirely of sand. Depth scaling of the dunes does not emerge in this data set. Only where the channel has accumulated abundant sand on the bed do the dunes exhibit scaling congruent with previous data compilations. The observations suggest that sediment supply plays an important, but often overlooked, role in bedform scaling in rivers.  相似文献   

10.
An active oolitic sand wave was monitored for a period of 37 days in order to address the relationship between the direction and strength of tidal currents and the resultant geometry, and amount and direction of migration of bedforms in carbonate sands. The study area is situated in a tidal channel near Lee Stocking Island (Exumas, Bahamas) containing an estimated 5.5 to 6 × 105 m3 of mobile oolitic sand. Tidal ranges within the inlet are microtidal and the maximum current velocity at the studied site is 0.6 m s?1. At least 300–400 m3 of mostly oolitic sand are formed within, or brought into, the channel area every year. The tidal inlet is subdivided into an ocean-orientated segment, in which sand waves are shaped by both flood and ebb tides, and a platform-orientated segment, where sand waves are mainly shaped by flood tides. The studied sand wave lies on the platformward flood-tide dominated segment in a water depth of 3.5.4.5 m. During the 37 days of observation, the oolitic and bioclastic sand wave migrated 4 m in the direction of the dominant flood current. The increments of migration were directly related to the strength of the tide. During each tidal cycle, bedforms formed depending on the strength of the tidal current, tidal range and their location on the sand wave. During flood tides, a steep lee and a gentle stoss side formed and current ripples and small dunes developed on the crest of the sand wave, while the trough developed only ripples. The average lee slope of the sand wave is 24.2°, and therefore steeper than typical siliciclastic sand waves. During ebb tides, portions of the crest are eroded creating a convex upward ebb stoss side, covered with climbing cuspate and linguoid ripples and composite dunes. The area between the ebb-lee side and the trough is covered with fan systems, sinuous ripples and dunes. The migration of all bedforms deviated to a variable degree from the main current direction, reflecting complex flow patterns in the tidal inlet. Small bedforms displayed the largest deviation, migrating at an angle of up to 90° and more to the dominant current direction during spring tides.  相似文献   

11.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

12.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

13.
Subaqueous dunes are formed on the KwaZulu-Natal outer-shelf due to sediment transport by the Agulhas Current (geostrophic current). These dunes occur within two dune fields at depths of ? 35 to ? 70 m. The net sediment transport direction is south, but short-period reversals form northward-migrating bedforms. The dune fields are physically bounded by late Pleistocene beachrock and aeolianite ledges. A bedform hierarchy has been recognized in the dune fields comprising a system of three generations of climbing bedforms. The outer dunefield has given rise to a sand ridge (H=12 m; L=4 km; W=1.1 km; and an 8° lee slope) whereas the inner dune fields have achieved large-scale dune status. Bedload parting zones within the dune fields occur where the sediment transport direction switches from north to south due to reversals in the geostrophic flow; these zones occur at depths of ? 60, ? 47 and ? 45 m. An interpretative stratigraphic model is presented on what such geostrophite deposits would look like in the ancient sedimentary record.  相似文献   

14.
Bedform climbing in theory and nature   总被引:7,自引:0,他引:7  
Where bedforms migrate during deposition, they move upward (climb) with respect to the generalized sediment surface. Sediment deposited on each lee slope and not eroded during the passage of a following trough is left behind as a cross-stratified bed. Because sediment is thus transferred from bedforms to underlying strata, bedforms must decrease in cross-sectional area or in number, or both, unless sediment lost from bedforms during deposition is replaced with sediment transported from outside the depositional area. Where sediment is transported solely by downcurrent migration of two-dimensional bedforms, the mean thickness of cross-stratified beds is equal to the decrease in bedform cross-sectional area divided by the migration distance over which that size decrease occurs; where bedforms migrate more than one spacing while depositing cross-strata, bed thickness is only a fraction of bedform height. Equations that describe this depositional process explain the downcurrent decrease in size of tidal sand waves in St Andrew Bay, Florida, and the downwind decrease in size of transverse aeolian dunes on the Oregon coast. Using the same concepts, dunes that deposited the Navajo, De Chelly, and Entrada Sandstones are calculated to have had mean heights between several tens and several hundreds of metres.  相似文献   

15.
大型海底、海岸和沙漠沙丘的形态和迁移特征   总被引:3,自引:0,他引:3       下载免费PDF全文
高抒 《地学前缘》2009,16(6):13-22
海底、海岸和沙漠沙丘的迁移与其波高、波长等形态参数有关。对一些代表性大型沙丘的分析表明,海底、海岸和沙漠沙丘的形态特征存在着较大的差异,在相同波长条件下,海底沙丘波高最小,海岸沙丘波高次之,沙漠沙丘波高最大。其原因主要是流体厚度的差异,其次是物质供给条件的不同:浅海地区的水深限制了沙丘向上生长,而陆地气流厚度较大,给沙丘的向上生长提供了较大的空间;沙漠环境的沉积物供给远大于海岸环境,因而导致沙丘高度的差异。沙丘形态参数经常偏离统计的波长 波高曲线,数值实验结果显示,这与推移质输运率有关。推移质输运率的沿程变化可以使形态参数系统性地偏离波长 波高曲线;推移质输运率的沿程突变可使沙丘迁移受阻,造成沉积物的垂向堆积,形成超高的沙丘。由于大型沙丘的迁移特征受控于推移质输运率和沙丘高度,因此可以通过波高设计来计算迁移距离 历时曲线,进而控制沙丘迁移动态。文中给出了一个获取迁移距离 历时曲线的算例。设计波高可通过人工篱笆、隔挡墙、沟渠、表面护层等措施而实现。  相似文献   

16.
Mountney  & Howell 《Sedimentology》2000,47(4):825-849
Sets of aeolian cross‐strata within the Cretaceous Etjo Formation of NW Namibia are bounded by a hierarchy of surfaces, the origin of which are ascribed to one of four processes related to aeolian bedform and erg behaviour. The base of the main aeolian succession is characterized by a basin‐wide erosional supersurface that formed in response to a period of aeolian deflation before the onset of the main phase of erg building. Interdune migration surfaces formed by draa migration are planar in sections parallel to the palaeowind and are inclined at up to 5° in an upwind direction (SW). Perpendicular to the palaeowind, interdune surfaces form 500‐m‐wide troughs, signifying crestline sinuosity within the original bedforms. Superimposition surfaces are inclined at 5–10° in a downwind direction and indicate the migration of crescentic oblique dunes over larger, slipfaceless transverse draa. Reactivation surfaces associated with minor changes in dune slipface orientation are distinct from other bounding surface types because overlying cross‐strata lie parallel to them, rather than downlap onto them. Analysis of the geometry of these bounding surfaces, together with the orientation of the cross‐strata within the sets that they bound, has enabled the detailed morphology of the original bedforms to be reconstructed. The maximum preserved thickness of individual aeolian sets varies systematically across the basin, from 52 m in the basin depocentre to only 8 m at the basin margin. The set architecture indicates that this spatial variation is primarily the result of decreased angles of bedform climb at the basin margin, rather than the presence of smaller bedforms. Similarly, a temporal reduction in the angle‐of‐climb, rather than a reduction in bedform size, is considered to be responsible for an upward decrease in preserved set thickness. Reductions in bedform climb angle reflect progressive loss of accommodation space as the accumulating erg filled the basin.  相似文献   

17.
In the northeast Atlantic, much of the deep cold water flow between the Norwegian Sea and the main North Atlantic basin passes through the Faroe‐Shetland and Faroe Bank Channels, generating strong persistent bottom currents capable of eroding and transporting sediment up to and including gravel. A large variety of sedimentary bedforms, including scours, furrows, comet marks, barchan dunes, sand sheets and sediment drifts, is documented using sidescan sonar images, seismic profiles, seabed photographs and sediment cores from the floor of the channel. Published information on current velocities associated with the various bedforms has been used to reconstruct the pattern of bottom currents acting on the channel floor. The results broadly reflect the current pattern predicted on the basis of regional oceanographic observations, but add considerable detail. The internal consistency of the results suggests that the methods used are robust, giving confidence in the fine detail of the observed bottom current structure. Bottom current velocities in the range < 0·3 to > 1·0 m s?1 are indicated by the range of observed bedforms, with the strongest currents associated with south‐west transport of Norwegian Sea Deep Water (NSDW) at water depths of 800–1200 m. The main NSDW flow forms a relatively narrow core that follows the base of the Faroes slope. This core follows the 90° change in trend of the Faroes slope at the junction between the Faroe‐Shetland and Faroe Bank Channels. The strongest currents within the NSDW core are found over the shallowest sill in the Faroe‐Shetland Channel and in the narrowest part of the channel immediately downstream of the sill, and are generated by topographic constriction of the flow. Eastward flow of deep water along the northern flank of the Wyville‐Thomson ridge suggests a complex current pattern with some recirculation of deep water within the deep Faroe Bank Channel basin. The observations suggest that Coriolis force is the main agent controlling the westward deflection of the NSDW into the Faroe Bank Channel, contradicting a previous suggestion that this was controlled by the topography of the Wyville Thomson Ridge.  相似文献   

18.
Surveyed outcrops of the Middle Jurassic Entrada Sandstone at Ghost Ranch, New Mexico, show the unusual occurrence of preserved aeolian dune palaeotopography buried beneath subaqueous strata. The preserved dune remnants have relief up to 35 m, trend NNW, and show internal scalloped cross-strata dipping to the WSW, with small sets occurring as both topsets and bottomsets. Outcrop data are best satisfied in computer models by 50 m high, sinuous bedforms that migrated to the WSW, while the sinuosity migrated alongcrest to the NNW. Superimposed small dunes occurred upon the stoss slope, and at the basal lee of the main bedform where they migrated alongslope to the NNW. Remnant dune palaeotopography is buried by onlapping, subaqueous, largely structureless sandstones believed to be derived by mass wasting of the upper portions of the dunes and deposited as sediment-gravity flows that infilled between the dunes. Preservation of dune palaeotopography beneath mass-flow deposits, with no evidence for gradually rising water, argues that flooding of the Entrada dune field was geologically instantaneous. The thickness and lithology of the overlying Todilto Formation conform to slight remnant palaeotopography on the Entrada surface. The Todilto is a laminated limestone and thinnest over remnant dune crestal areas, but thickens and increases in gypsum content downslope until it abruptly yields to a gypsum mound positioned over a remnant interdune hollow. The Todilto laminations are interpreted as seasonal varves deposited below wave base in a density-stratified water body. The flooding event that gave rise to the controversial Todilto water body occurred during Entrada time, with Todilto deposition occurring within an already substantial water body.  相似文献   

19.
A range of large-scale dunes of oolitic calcarenite composition are exposed in the Corinth Basin of central Greece. These transverse dunes and a very large linear dune (> 15 m high) lie within an Upper Pleistocene, transgressive marine sequence. Tidal flow, accelerated by constriction through a narrow, fault-bounded seaway, is interpreted to have generated the current velocities necessary to produce the dunes. Marine facies in the Upper Pleistocene sequence include beach to offshore conglomerates and sandstones with wave-modified sedimentary structures and herringbone cross-stratification. An offshore facies association comprises variably bioturbated siltstones and sandstones with a varied marine fauna that includes thermophile species such as scleractinian corals and Strombus bubonius. Oolitic sandstone facies also occur. Oolitic sands were apparently produced in shoal environments subject to tidal (and wave) action, and transported by dominant southerly currents over the southern part of the basin. Oolites accumulated in a linear dune 2.7 km long and 15–20 m high and in three-dimensional transverse dunes up to 10 m high having a variety of compound and simple internal geometries. The isolated, WSW-ENE-trending linear form exhibits angle of repose sedimentary dips (up to 35°) of avalanche sets on its SE flank and sets typically with dips of 15–20° to the NW. Internal high-angle discontinuities are developed in the SE-dipping lee face. It is proposed that a dominant north-to-south flow crossed over the crest obliquely, resulting in both net erosional and depositional processes on the lee flank. A subordinate (?tidal) current may have locally and or periodically crossed the dune crest in a westwards direction. A string of transverse dunes, which were located adjacent to a fault/marine terrace scarp, is interpreted to have originally coalesced to form the linear dune. The distribution of transverse and linear dunes together with the palaeogeographical reconstruction suggest that a marine connection periodically existed across the Corinth Isthmus during the Late Pleistocene due to a combination of active faulting and glacio-eustatic highstands of sea level.  相似文献   

20.
Clay-drape couplets on subaqueous dunes have been regarded as a diagnostic feature of the subtidal environment since Visser's seminal paper (1980). The new observation of clay-drape couplets in the intertidal zone on a present day tidal bar of the Gironde estuary shows that they are not restricted to the subtidal zone.
In the intertidal zone, low-tide slack-water clay drapes are deposited in the bottomsets of the dominant current dunes when the muddy water retained in the troughs is absorbed into the sand during the emergence of the intertidal bar. They drape emergence run-off ripples generated by the drainage currents in the bottomsets. High-tide slack-water clay drapes are deposited over the entire dune surface and are preserved on the lee side of the dunes and in the bottomsets. They drape the subordinate current ripples. Low-tide and high-tide slack-water clay drapes enclose one thin rippled sand layer (the subordinate current bundle) and are isolated from other adjacent clay-drape couplets by the dominant current bundle.
The clay-drape couplets deposited in the intertidal zone can be distinguished from their subtidal counterparts on the basis of two morphological differences:
1. In the intertidal zone, the low-tide clay drape is only present in the bottomsets of the dunes, whereas in the subtidal zone equivalent clay drapes are also present on the lower part of the lee side of the dunes.
2. In the intertidal zone, low-tide clay drapes are deposited in the bottomsets of the dunes over emergence run-off ripples oriented in the direction of the drainage currents (i.e. in a direction normal to the tidal currents). Conversely, in the subtidal zone, the equivalent clay drapes are typically deposited over ripples oriented in the tidal-current direction (ebb or flood). There is a difference of polarity of 90° between the intertidal and subtidal small-scale bedforms draped by the low-tide slack-water drapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号