首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
大气环流的不连续振荡和指数循环   总被引:1,自引:1,他引:1  
本文利用两层斜压准地转模式,在低谱简化下,得到一个热力强迫波,瞬变波与纬向气流相互作用的非线性方程组。在近共振和弱斜压不稳定的假定下,利用多尺度方法和不连续振动分析方法,详细讨论了相空间中解的性质。初步讨论了大气环流非均匀指数循环的物理机制。  相似文献   

2.
The Indian Ocean has a particularity, its width is close to half the wavelength of a Rossby wave of biannual frequency, this coincidence having been capitalized on by several authors to give the observations a physical basis. The purpose of this article is to show that this is not the case since the resonance of tropical baroclinic waves occurs in all three oceans. This is because the westward-propagating Rossby wave is retroflexed at the western boundary to form off-equatorial Rossby waves dragged by countercurrents before receding and turning back as a Kelvin wave. Thus a quasi-stationary baroclinic wave is formed, whose mean period is tuned to the forcing period. Two independent basin modes resonantly forced are highlighted – 1) a nearly symmetric zonal 1/2-yr period Quasi-Stationary Wave (QSW) that is resonantly forced by the biannual monsoon. It is formed from first baroclinic mode equatorial-trapped Rossby and Kelvin waves and off-equatorial Rossby waves at the western antinode. This QSW controls the Equatorial Counter Current at the node. The Indian Ocean Dipole (IOD) results from a subharmonic mode locking resulting from the coupling of this QSW and the 2nd, 3rd and 4th baroclinic modes - 2) a 1-yr period QSW formed from an off-equatorial baroclinic Rossby wave, which is induced from the southernmost current of the Indonesian Throughflow through the Timor passage, propagating in the southern and northern hemispheres: the drivers are south-easterlies in the southern hemisphere and monsoon wind in the northern hemisphere.  相似文献   

3.
Summary The role of stationary (monthly mean) and transient (departure from monthly mean) waves within the atmospheric energy cycle is examined using global analyses from the European Centre for Medium Range Weather Forecasts (ECMWF) for the period 1980–1987. Only January and July averages are considered.It is confirmed that planetary stationary waves are basically baroclinic. Their contribution to the globally averaged energy cycle of the atmosphere is comparable to that of the transient waves. In January they contribute about 40% to the baroclinic conversion (CA) from zonal mean to eddy available potential energy. Local values for the northern hemisphere even show a predominant role of the stationary wave conversions over those originating from transient waves. Part of the available potential energy of stationary waves (A SE) is converted to kinetic energy by warm air rising and cold air sinking. Nonlinear energy conversion, which can be interpreted as destruction of stationary temperature waves by transients, is the second sink forA SE. The order of magnitude of these two processes is similar.Barotropic nonlinear conversions, though negligible in the global average, reveal large conversion rates between the mean positions of the polar and the subtropical jets. Their orientation is suggestive of a tendency to increase stationary wave kinetic energyK SE at its local minimum between the jets at the expense of the synoptic scale transients.While all terms of the energy cycle related to stationary waves reveal a predominance of the planetary scale (zonal wave numbers 1–3) transient waves are governed by synoptic scale waves (zonal wave numbers 4–9) only with respect to the baroclinic and barotropic conversions: a significant amount of transient wave energy (50% for the global average ofA TE) is due to planetary scale waves.With 15 Figures  相似文献   

4.
Summary A nonlinear, forced, dissipative quasi-geostrophic, two-level -plane model of baroclinic instability is formulated. The model resolves a baroclinic zonal flow and a wave of arbitrary zonal scale. Multiple equilibrium solutions describing Hadley and eddy circulations coexist. Only the circulation with smaller thermal wind is stable. The most efficient eddy activity occurs at a zonal wavenumber close to the wavelength of maximum instability of linear baroclinic instability theory. For a wide range of forcing and dissipative parameters, the steady baroclinic zonal wind of the eddy regime is close to the critical shear of linear theory. Eddy statistics are obtained analytically in terms of the doparture of the zonally symmetric state from radiative equilibrium. A parameterization for the eddy heat transport is obtained.With 14 Figures  相似文献   

5.
The ability of an atmospheric general circulation model to reproduce fundamental features of the wintertime extratropical Southern Hemisphere (SH) circulation is evaluated with emphasis on the daily variability of the SH mean flow and the mean flow-transient perturbations interaction. Two 10-year simulations using a new version of the LMDZ GCM with a stretched grid scheme centered at 45 °S and forced by climatological SST are performed: a high (144Ꮡ) and low (64Ꭹ) horizontal resolution runs. The performance of both simulations was determined by comparing several simulated fields (zonal wind, temperature, kinetic energy, transient eddy momentum and heat fluxes, Eliassen-Palm fluxes, Eady growth rate and baroclinic conversion term) against the European Centre for Medium Range Weather Forecast reanalyses (ERA). High and low-resolution simulations are similar in many respects; in particular, both experiments reproduce the main patterns of the southern extratropical large-scale circulation satisfactorily. Increasing resolution does not improve universally some spurious aspects of the low resolution simulation (e.g. the cold bias in the high polar troposphere, the debilitated subtropical jet, the low baroclinic conversion rate). Those aspects present little sensitivity to the model resolution. The interaction between transient eddies and zonal mean flow are examined. The low-resolution experiment is able to qualitatively represent the acceleration/deceleration of the mean flow by transient perturbations, south/north of 30 °S with an accuracy similar to that of the high-resolution experiment. Although both experiments represent the baroclinic structure of the mean flow satisfactorily, the model underestimates some transient properties due to the underestimation of the baroclinic conversion term in middle latitudes. Such misrepresentation does not improve with increasing resolution and is related to the relatively weak meridional temperature gradient and the inadequate geographical distribution of the eddy heat fluxes. In particular, the eddy kinetic energy is always underestimated. Eddy kinetic energy does not improve convincingly with increasing resolution, suggesting that the adequate representation of the storm tracks is highly influenced by the physical parametrizations.  相似文献   

6.
Based on the Complex Empirical Orthogonal Functions(CEOFs) of bandpass-filtered daily streamfunction fields, a quantitative method of detecting transient(synoptic) Rossby wave phase speed(RWPhS) is presented. The transient RWPhS can be objectively calculated by the distance between a high(or low) center in the real part of a CEOF mode and its counterpart in the imaginary part of the same CEOF mode divided by the time span between two adjacent peaks(or bottoms) of two principal component curves f...  相似文献   

7.
Using diagnostic analyses and an AGCM simulation, the detailed mechanism of Indian Ocean Dipole (IOD) influence on the early winter Tibetan Plateau snow cover (EWTPSC) is clarified. In early winter of pure positive IOD years with no co-occurrence of El Ni?o, the anomalous dipole diabatic heating over the tropical Indian Ocean excites the baroclinic response in the tropics. Since both baroclinic and barotropic components of the basic zonal wind over the Arabian Peninsula increase dramatically in early winter due to the equatorward retreat of the westerly jet, the baroclinic mode excites the barotropic Rossby wave that propagates northeastward and induces a barotropic cyclonic anomaly north of India. This enables the moisture transport cyclonically from the northern Indian Ocean toward the Tibetan Plateau. The convergence of moisture over the plateau explains the positive influence of IOD on the EWTPSC. In contrast, the basic zonal wind over the Arabian Peninsula is weak in autumn. This is not favorable for excitation of the barotropic Rossby wave and teleconnection, even though the IOD-related diabatic heating anomaly in autumn similar to that in early winter exists. This result explains the insignificant (significant positive) partial correlation between IOD and the autumn (early winter) Tibetan Plateau snow cover after excluding the influence of ENSO. The sensitivity experiment forced by the IOD-related SST anomaly within the tropical Indian Ocean well reproduces the baroclinic response in the tropics, the teleconnection from the Arabian Peninsula, and the increased moisture supply to the Tibetan Plateau. Also, the seasonality of the atmospheric response to the IOD is simulated.  相似文献   

8.
斜压大气波动准共振与中高纬低频振荡   总被引:2,自引:0,他引:2  
陆维松 《气象学报》1994,52(2):201-211
从准地转两层模式出发,可能产生两种情况准共振:(1)纯正压波;(2)两个斜压波和一个正压波。本文对(2)求得准共振三波振幅的解析解和波能量变化周期的近似式。此近似式和数值计算结果两者都表明,斜压情况能量变化周期比正压情况更容易趋于准共振频率偏离Δω自身周期2πε/Δω,从物理上指出,波的位相与波振幅之间存在着一个反馈机制,由正压波与斜压波之间的慢变相差引起的动能与有效位能的互相转换,形成了正压波和斜压波交替增强和减弱2的低频振荡,其振荡周期与上述近似式一致。当Δω~(0.1-0.02).(ωj)时,平均能量周期为12-43d,而当Δω=0时,平均周期为366d.因此,频率偏离Δω出现仍可能是产生料压大气中高纬低频振荡的一种新的重要机制。  相似文献   

9.
The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers. Using a Wentzel-Kramers-Brillouin approach, the radial propagation of a baroclinic disturbance is shown to be slower than a barotropic disturbance, resulting in a slower linear axisymmetrization for baroclinic disturbances. The slower-propagating baroclinic waves also cause more baroclinic asymmetric kinetic energy to be transferred directly to the barotropic symmetric vortex than from barotropic disturbances, resulting in a faster axisymmetrization process in the nonlinear baroclinic wave case than in the nonlinear barotropic wave case.  相似文献   

10.
把斜压气流中的短波槽看成波包,并把波包作为准地转模式的初值进行研究,发现波包的结构对其演变有重要影响,初始阶段急流轴下面向西倾斜的波包能够获得较快的发展,而向东倾斜的波包则是衰减的,这与WKBJ方法得出的结论[1]是一致的,但是无论西倾还是东倾的波包,除了其自身随时间的演变外,还会激发出斜压不稳定波动,而且随着扰动的发展,不稳定斜压波会逐步在扰动中占主导地位。由此可以解释某些中纬度气旋的发生发展问题。  相似文献   

11.
The barotropic and baroclinic disturbances axisymmetrized by the barotropic basic vortex are examined in an idealized modeling framework consisting of two layers.Using a Wentzel-Kramers-Brillouin approach,the radial propagation of a baroclinic disturbance is shown to be slower than a barotropic disturbance,resulting in a slower linear axisymmetrization for baroclinic disturbances.The slower-propagating baroclinic waves also cause more baroclinic asymmetric kinetic energy to be transferred directly to the barotropic symmetric vortex than from barotropic disturbances,resulting in a faster axisymmetrization process in the nonlinear baroclinic wave case than in the nonlinear barotropic wave case.  相似文献   

12.
A high-resolution ocean general circulation model (OGCM) is used to investigate the Kuroshio path variations south of Japan. The model reproduces many important features of the Kuroshio system including its interannual bimodal variability south of Japan. A decreasing trend of the spatial averaged relative vorticity is detected when the Kuroshio takes the non-large meander (NLM) path, and during the transition period from the NLM to the large meander (LM), a sudden release of velocity shear corresponds well to the weakening of the Shikoku recirculation gyre (SRG), which plays a key role in modulating the Kuroshio path variations. Analysis of eddy energetics indicates that baroclinic instability is mainly responsible for the formation of the LM. In addition, further analysis shows that the strength of the SRG could be largely influenced by the baroclinic Rossby wave adjustment process, forced by the wind stress curl anomalies in the North Pacific basin, based on the model investigation. It is suggested that the cyclonic disturbances might account for the weakening of the SRG, and act as a remote trigger for the baroclinic instability of the Kuroshio south of Japan.  相似文献   

13.
The dynamics of the wintertime atmospheric response to the 1986/87 El Niño SST anomalies is studied. A GCM used for this purpose simulates a wave train over the Pacific/North American (PNA) region that agrees closely in amplitude with that observed, but phase shifted 30° to the east. Linear baroclinic model experiments are performed in order to determine the origin of the GCM and observed stationary wave anomalies, with particular focus on the cause for GCM failure. Diagnostics with the linear model reveal that the GCM and observed wave train anomalies are maintained by very different processes. In the GCM, the forcing due to tropical diabatic heating and transient vorticity fluxes are equally important over the PNA region. In the observations, the transient vorticity fluxes assume the primary role. The cause for these discrepancies is traced to the different dynamic influences of suppressed rainfall near Indonesia. The associated diabatic cooling is found to excite a large amplitude wave train over the PNA region in the GCM, while no significant extratropical response to cooling is found in the observations. The combined effects of the diabatic cooling and the reorganization of the storm track transients by the remotely forced wave train acts to shift the GCM's wave train well to the cast of that observed. Due to uncertainties in the observed diabatic forcing, however, it is not clear to what extent the GCM's failure is due to errors in the simulated anomalous forcing and/or to the GCM's mean climate error.This paper was presented at the Second International Conference of Modelling on Global Climate Variability, held in Hamburg 7–11 September 1992 under the auspices of the Max Planck Institute for Meteorology. Guest Editor for these papers is L. Dümenil Correspondence to: M Ting  相似文献   

14.
非纬向基本气流的斜压不稳定   总被引:4,自引:2,他引:4  
李崇银 《气象学报》1984,42(2):148-156
本文用分层两层模式研究了在一般非纬向基本气流情况下的斜压不稳定。通过比较分析,给出了基本气流对斜压不稳定的影响,结果表明,在非纬向基本气流情况下,更有利于出现斜压不稳定。 将非纬向基本气流的斜压不稳定理论用于高纬度地区的大气运动,说明了高纬度地区常见的小扰动强烈发展,是切变基本气流所驱动的一种“涡旋波”的斜压不稳定。  相似文献   

15.
The effect of barotropic shear on baroclinic instability has been investigated using both a linear quasi-geostrophic β-plane channel model and a multilevel primitive equation model on the sphere when a nonmodal disturbance is used as the initial perturbation condition. The analysis of the initial value problem has demonstrated the existence of a rapid transient growth phase of the most unstable mode. The inclusion of a linear barotropic shear reduces initial rapid transient growth, although at intermediate times the transient growth rates of the sheared cases can be larger than in the unsheared case owing to downgradient eddy momentum fluxes. Certain disturbances can amplify by factors of 4.5–60 times (for the L2 norm), or 3–30 times (for the perturbation amplitude maximum), as large as disturbances based on the linear normal modes. However, linear horizontal shear always reduces the amplification factors. The mechanism is that the shear confines the disturbance meriodionally and therefore limits the energy conversion from the zonal available potential energy to eddy energy. The effect of barotropic shear on the transient growth is not changed much in the presence of either thermal damping or Ekman pumping. Nonmodal integrations of baroclinic wave lifecycles show that the energy level reached by eddies is not very sensitive to the structure of the initial disturbance if the amplitude of the initial disturbance is small. Although in some cases the eddy kinetic energy level reached by the wave integrated from nonmodal disturbance can be 25–150% larger than the normal mode integrations, barotropic shear, characterized by large shear vorticity with small horizontal curvature, always reduces the eddy kinetic energy level reached by the wave, confirming the results of normal mode studies.  相似文献   

16.
锋生过程对扰动发展的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
王兴宝 《大气科学》1997,21(4):472-484
本文用WKBJ方法讨论了叠加在Hoskins-Bretherton[1]]锋生模型背景上的小扰动发展问题。考虑了大尺度变形场、锋区斜压气流及锋生环流对扰动发展的作用,发现锋生过程有利于与锋平行的中小尺度扰动发展,而锋消则有利于沿锋传播的横波型扰动发展。  相似文献   

17.
To what extent is tropical variability forced from the North Pacific through ocean pathways relative to locally generated variability and variability forced through the atmosphere? To address this question, in this study we use an anomaly-coupled model, consisting of a global, atmospheric general circulation model and a 4½-layer, reduced-gravity, Pacific-Ocean model. Three solutions are obtained; with coupling over the entire basin (CNT), with coupling confined to the tropics and wind stress and heat fluxes in the North and South Pacific specified by climatology (TP), and with coupling confined to the Tropics and wind stress and heat fluxes in the North Pacific specified by output from CNT (NPF). It is found that there are two distinct signals forced in the North Pacific that can impact the tropics through ocean pathways. These two signals are forced by wind stress and surface heat flux anomalies in the subtropical North Pacific. The first signal is relatively fast, impacts tropical variability less than a year after forcing, is triggered from November to March, and propagates as a first-mode baroclinic Rossby wave. The second signal is only triggered during springtime when buoyancy forcing can effectively generate higher-order baroclinic modes through subduction anomalies into the permanent thermocline, and it reaches the equator 4–5 years after forcing. The slow signal is found to initiate tropical variability more efficiently than the fast signal with one standard deviation in subtropical zonal wind stress forcing tropical SST anomalies centered on the equator at 135°W of approximately 0.5°C. Allowing extratropically forced tropical variability is found to shift primarily 2-year ENSO variability in a tropics-alone simulation to a more realistic range of 2–6 years.  相似文献   

18.
对流层上层斜压波包活动与2003年江淮流域梅雨的关系   总被引:7,自引:3,他引:4  
梅士龙  管兆勇 《大气科学》2008,32(6):1333-1340
利用NCEP/NCAR再分析和中国740站逐日降水资料, 研究了2003年淮河流域梅雨期间对流层上层斜压波动的传播情况。结果发现, 斜压波组织成波包向下游传播且具有明显的下游频散效应。波动起源于巴尔喀什湖西北侧, 沿着西北-东南向的路径向东南传播, 传至江淮流域大约需要3天。斜压波包所带来的扰动能量为江淮流域暴雨的发生发展提供了必要的能量积聚。通过与1998和1997年这两个梅雨年份的比较, 发现1998年异常强梅雨年的斜压波包的活动特征与2003年的相似, 但在梅雨降水非常偏少的1997年, 未发现有明显的斜压波包向下游的传播。  相似文献   

19.
2016年6—7月,长江中下游地区发生了自1998年以来最严重的强降水事件,造成了重大的经济损失。利用NCEP/NCAR再分析资料和中国2479站逐月及逐日降水资料,研究了2016年梅雨期间长江中下游地区降水与欧亚大陆对流层上层斜压波包活动的关系,并诊断了两者之间的信息流向。结果表明,梅雨期间的高频斜压波动具有明显的下游频散效应。波动起源于黑海,沿西北—东南方向于3—4 d后传至长江中下游地区。斜压波包为长江中下游地区强降水的发生提供了必要的能量。波作用通量矢量的分布表明,梅雨期间逐日均有来自西风带上游的扰动能量向长江中下游流域传播。而梅雨期间降水与斜压波包的信息流关系表明,二者之间存在信息传递。因此,3—4 d并源于黑海附近的斜压波包活动是2016年长江中下游梅雨期间异常降水的成因。这些结果为深刻认识长江中下游地区强降水事件发生的成因和有效预测提供了线索。   相似文献   

20.
Chen  Lilan  Fang  Jiabei  Yang  Xiu-Qun 《Climate Dynamics》2020,55(9-10):2557-2577

While recent observational studies have shown the critical role of atmospheric transient eddy (TE) activities in midlatitude unstable air-sea interaction, there is still a lack of a theoretical framework characterizing such an interaction. In this study, an analytical coupled air-sea model with inclusion of the TE dynamical forcing is developed to investigate the role of such a forcing in midlatitude unstable air-sea interaction. In this model, the atmosphere is governed by a barotropic quasi-geostrophic potential vorticity equation forced by surface diabatic heating and TE vorticity forcing. The ocean is governed by a baroclinic Rossby wave equation driven by wind stress. Sea surface temperature (SST) is determined by mixing layer physics. Based on detailed observational analyses, a parameterized linear relationship between TE vorticity forcing and meridional second-order derivative of SST is proposed to close the equations. Analytical solutions of the coupled model show that the midlatitude air-sea interaction with atmospheric TE dynamical forcing can destabilize the oceanic Rossby wave within a wide range of wavelengths. For the most unstable growing mode, characteristic atmospheric streamfunction anomalies are nearly in phase with their oceanic counterparts and both have a northeastward phase shift relative to SST anomalies, as the observed. Although both surface diabatic heating and TE vorticity forcing can lead to unstable air-sea interaction, the latter has a dominant contribution to the unstable growth. Sensitivity analyses further show that the growth rate of the unstable coupled mode is also influenced by the background zonal wind and the air–sea coupling strength. Such an unstable air-sea interaction provides a key positive feedback mechanism for midlatitude coupled climate variabilities.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号