首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meteorological tsunamis are frequently observed in different tide stations at the southeastern coast of South America. They are associated with the occurrence of atmospheric gravity waves during the passages of cold fronts over the Buenos Aires Province continental shelf. On the other hand, storm surges are also frequent in the region, and they are associated with strong and persistent southerlies, which are also frequent during cold front passages. The impact of meteorological tsunamis in coastal erosion and in the statistics of storm surge trends is discussed in this paper. For this study, fifteen meteorological tsunamis (with maximum wave heights higher than 0.20 m), seven of them simultaneous to the occurrence of storm surge events (with extreme levels higher than |±0.60 m|), are selected from April 2010 to January 2013. The impact of meteorological tsunamis in the storm erosion potential index (SEPI) is evaluated. Not significant differences are obtained between SEPI calculated with and without filtering the meteorological tsunami signal from the storm surge data series. Moreover, several experiments are carried out computing SEPI from synthetic sea level data series, but very low changes (lower than 4 %) are also obtained. It is concluded that the presence of moderate meteorological tsunamis on sea level records would not enhance this index at the Buenos Aires Province coast. On the other hand, taking into account that meteorological tsunamis can reach up the 20–30 % of the storm surge height, it was concluded that the statistics of storm surge trends (and their uncertainties) should be revised for Mar del Plata data series.  相似文献   

2.
海啸作为五大海洋自然灾害之一,严重威胁着人类生命财产安全。近些年来,国内外学者对地震海啸进行了大量研究,主要针对海啸的生成、传播、爬高和淹没的数值模拟,以及古海啸沉积物进行研究,但是对于海啸地震震源机制的研究还比较欠缺,尤其是缺乏对震级小于6.5的海啸地震的研究。针对我国的地震海啸研究现状,强调震级小于6.5地震引发海啸的问题不容忽视。本文归纳整理了全球766次地震海啸,利用三角图分类基本法则对海啸地震震源机制解进行分类,并对其中341个发生在1976年后的海啸地震进行震源机制解分析,对其中633次海啸浪高进行统计学方法分析研究。本文认为逆冲型、正断型、走滑型和奇异型机制地震均能引发海啸,逆冲型地震引发的海啸占比最大,震级小于6.5级地震引发的海啸的浪高也有高达10 m的情况,也能产生巨大破坏性。逆冲型、正断型、奇异型地震可直接引起海底地形垂向变化,进而引发海啸,而走滑型地震引发海啸则可能有两种原因,一种是走滑型地震并非纯走滑型而是带有正断或逆冲分量从而引发海啸,另外一种是走滑型地震引发海底滑坡导致海底地形变化进而产生海啸。从海啸地震震源深度分析,能产生海啸的地震震源深度97%以上都是浅源地震,主要集中在30 km深度以内,但是也有中深源地震海啸。本文综合海啸地震的震源特点、我国地理位置以及以往海啸发生的情况,认为未来我国沿海地区威胁性的地震海啸主要集中在马尼拉海沟和台湾海峡区域,在今后海啸预警方面需要格外重视这些区域,通过建立完善海啸预警系统来减少损失。  相似文献   

3.
The major earthquake-induced tsunamis reliable known to have occurred in and near Greece since antiquity are considered in the light of the recently obtained reliable data on the mechanisms and focal depths of the earthquakes occurring here. (The earthquake data concern the major shocks of the period 1962–1986.) First, concise information is given on the most devastating tsunamis. Then the relation between the (estimated) maximum tsunami intensity and the earthquake parameters (mechanism and focal depth) is examined. It is revealed that the most devastating tsunamis took place in areas (such as the western part of the Corinthiakos Gulf, the Maliakos Gulf, and the southern Aegean Sea) where earthquakes are due to shallow normal faulting. Other major tsunamis were nucleated along the convex side of the Hellenic arc, characterized by shallow thrust earthquakes. It is probably somewhere there (most likely south of Crete) that the region's largest known tsunami occurred in AD 365, claiming many lives and causing extensive devastation in the entire eastern Mediterranean. Such big tsunamis seem to have a return period of well over 1000 years and can be generated by large shallow earthquakes associated with thrust faulting beneath the Hellenic trench, where the African plate subduces under the Euroasian plate. Lesser tsunamis are known in the northernmost part of the Aegean Sea and in the Sea of Marmara, where strike-slip faulting is observed. Finally, an attempt is made to combine the tsunami and earthquake data into a map of the region's main tsunamigenic zones (areas of the sea bed believed responsible for past tsunamis and expected to nucleate tsunamis in the future).  相似文献   

4.
A probabilistic tsunami hazard assessment is performed for the Makran subduction zone (MSZ) at the northwestern Indian Ocean employing a combination of probability evaluation of offshore earthquake occurrence and numerical modeling of resulting tsunamis. In our method, we extend the Kijko and Sellevoll’s (1992) probabilistic analysis from earthquakes to tsunamis. The results suggest that the southern coasts of Iran and Pakistan, as well as Muscat, Oman are the most vulnerable areas among those studied. The probability of having tsunami waves exceeding 5 m over a 50-year period in these coasts is estimated as 17.5%. For moderate tsunamis, this probability is estimated as high as 45%. We recommend the application of this method as a fresh approach for doing probabilistic hazard assessment for tsunamis. Finally, we emphasize that given the lack of sufficient information on the mechanism of large earthquake generation in the MSZ, and inadequate data on Makran’s paleo and historical earthquakes, this study can be regarded as the first generation of PTHA for this region and more studies should be done in the future.  相似文献   

5.
6.
The first 7 years of the National Tsunami Hazard Mitigation Program (NTHMP) have had a significant positive impact on operations of the Richard H. Hagemeyer Pacific Tsunami Warning Center (PTWC). As a result of its seismic project, the amount and quality of real-time seismic data flowing into PTWC has increased dramatically, enabling more rapid, accurate, and detailed analyses of seismic events with tsunamigenic potential. Its tsunameter project is now providing real-time tsunameter data from seven strategic locations in the deep ocean to more accurately measure tsunami waves as they propagate from likely source regions toward shorelines at risk. These data have already been used operationally to help evaluate potential tsunami threats. A new type of tsunami run-up gauge has been deployed in Hawaii to more rapidly assess local tsunamis. Lastly, numerical modeling of tsunamis done with support from the NTHMP is beginning to provide tools for real-time tsunami forecasting that should reduce the incidence of unnecessary warnings and provide more accurate forecasts for destructive tsunamis.  相似文献   

7.
黄河三峡库区的涌浪灾害风险不容忽视,经验公式是宜优先考虑的涌浪快捷评价方法.对黄河三峡焦家崖头2012年2月7日的黄土滑坡和涌浪进行调查,分析了黄土滑坡及涌浪的特征.采用9种涌浪经典计算公式,计算了涌浪的初始浪高、对岸爬高等特征参数.与调查结果对比表明,采用美国土木工程师协会推荐法、水科院算法、Huber and Hager模型和潘家铮算法获取的焦家崖头黄土滑坡诱发的涌浪特征参数均接近实际,其确定的校正系数分别为2.14、1.92、0.6和0.66,对比考虑安全性和经济性后推荐采用潘家铮算法预测黄河三峡的涌浪.  相似文献   

8.
A number of examples are presented to substantiate that submarine landslides have occurred along most continental margins and along several volcano flanks. Their properties of importance for tsunami generation (i.e. physical dimensions, acceleration, maximum velocity, mass discharge, and travel distance) can all gain extreme values compared to their subaerial counterparts. Hence, landslide tsunamis may also be extreme and have regional impact. Landslide tsunami characteristics are discussed explaining how they may exceed tsunamis induced by megathrust earthquakes, hence representing a significant risk even though they occur more infrequently. In fact, submarine landslides may cause potentially extreme tsunami run-up heights, which may have consequences for the design of critical infrastructure often based on unjustifiably long return periods. Giant submarine landslides are rare and related to climate changes or glacial cycles, indicating that giant submarine landslide tsunami hazard is in most regions negligible compared to earthquake tsunami hazard. Large-scale debris flows surrounding active volcanoes or submarine landslides in river deltas may be more frequent. Giant volcano flank collapses at the Canary and Hawaii Islands developed in the early stages of the history of the volcanoes, and the tsunamigenic potential of these collapses is disputed. Estimations of recurrence intervals, hazard, and uncertainties with today’s methods are discussed. It is concluded that insufficient sampling and changing conditions for landslide release are major obstacles in transporting a Probabilistic Tsunami Hazard Assessment (PTHA) approach from earthquake to landslide tsunamis and that the more robust Scenario-Based Tsunami Hazard Assessment (SBTHA) approach will still be most efficient to use. Finally, the needs for data acquisition and analyses, laboratory experiments, and more sophisticated numerical modelling for improved understanding and hazard assessment of landslide tsunamis are elaborated.  相似文献   

9.
A list of 300 tsunamis and similar phenomena known in the Mediterranean is given. Data reliability and wave intensity are estimated; mechanisms of tsunami generation are indicated and data from literature sources on the coordinates and magnitudes of tsunamigenic earthquakes are cited. Eighteen zones of excitation and manifestation of tsunamis are identified which can be integrated into four groups with respect to the recurrence period and maximum intensity of the tsunamis. The strongest tsunamis are excited in the Aegean Sea, and the Hellenic and Calabrian island arcs. The focal depth of the earthquake-generating tsunamis in the Mediterranean is, on average, less than that in the Pacific. Correspondingly, the magnitude of tsunamigenic earthquakes is lower. According to preliminary estimates, the Mediterranean tsunamis attenuate with distance more rapidly than do those in the Pacific Ocean.  相似文献   

10.
Tsunamis are reconstructed on the basis of distribution of tsunamigenic sediments in coastal lowland sections. Reflections of anomalous tsunamis are recorded in detail in the lacustrine–boggy sections of the Lesser Kuril Ridge, while only fragments of these sediments have been found on the islands of the Greater Kuril Ridge. The distribution and composition of the sediments left by recent large-scale tsunamis (locally documented 1994 and 1894 Shikotan tsunamis and transoceanic 2011 Tohoku tsunami) are analyzed for the purpose of understanding deposition features during large and megatsunamis. Interregional correlation of the events during the last ~2.5 kyr is carried out with estimation of their scales. It is established that large events took place in the 17th and 18th centuries and approximately at 1.0, 1.4–1.6, 1.7–1.8, and 2.0–2.1 ka ago. New data on large tsunami chronology since the Middle Holocene are presented. A unique natural peatland section with abundant tsunamigenic sand layers is studied on the Pacific side of Zelenyi Island (Rudnya Bay), where deposition continued through the entire Holocene. The largest tsunamis which happened on the South Kuril Islands during the last ~7.5 kyr and can be classed as megatsunamis are revealed.  相似文献   

11.
Disaster experts around the world have continually warned governments and the public about the possibility of “worst-case” natural hazard scenarios and their overwhelming impacts. Yet, planning for the occurrence of these events has fallen far short of need. The large earthquake that occurred off the coast of Sumatra in 2004, which resulted in one of the deadliest tsunamis ever recorded, was a painful reminder that living in some of the most desirable areas of the world does have its risks. We all have enjoyed the fun of restful visits to coastal resort communities all around the world, and we rarely think about earthquakes or tsunamis interfering with this enjoyment. Yet, they take us by surprise. Before these events do occur, there should be adequate education for everyone on what actions are appropriate as well as an effective warning system to trigger the right actions.  相似文献   

12.
Tsunami-induced scour at coastal roadways: a laboratory study   总被引:1,自引:1,他引:0  
Coastal roads are lifelines for bringing emergency personnel and equipment into affected areas after tsunamis, thus careful thought should be given to how to make roadways safer from tsunamis. Scouring at roadways is the primary damage caused by tsunamis; however, tsunami-induced scouring and beach erosion are less understood compared to tsunami runup and tsunami inundation. A set of laboratory experiments are reported in this study on tsunami-induced scour at a road model situated on a sandy beach. Our experiments showed that the distance between the shoreline and a roadway, which varies with tides, was a key factor affecting the scour depth at the road. Having the coastal road at about half of the inundation distance is not the most ideal location. The depth of road embedment did not affect the scour depth in our experiments. It was also found that for typical tsunamis, the scour depth is unlikely to reach its equilibrium stage. The information reported in this study is useful for local authorities to assess potential tsunami damage of roads and to have a better plan for tsunami disaster relief.  相似文献   

13.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

14.
The purpose of this paper is to examine factorsinfluencing numerical simulations of tsunamis, andtheir implications for hazard mitigation. We focus ona specific finite element hydrodynamic model, chosenfor its role in the systematic development ofinundation maps for regions threatened primarily byCascadia Subduction Zone (CSZ) tsunamis. However, inpart for generality and in part because of poorhistorical records for CSZ events, we discuss here theperformance of the model in the context of betterdocumented past events with epicenters locatedelsewhere: the July 12, 1993 Hokkaido Nansei-Oki andthe March 28, 1964 Alaska tsunamis. Our analysisincludes the influence of grid refinement,interactions between tides and tsunamis, artificialenergy loss, and numerical parameterization. We showthat while the ability exists to reproduce pastevents, limitations remain in the modeling processthat should be accounted for in translating modelingresults into information for tsunami mitigation andresponse.  相似文献   

15.

Tsunamic events are a frequent hazard to coastal towns. Despite this, the extent to which resilience models can be applied to coastal towns as well as the aspects that should be considered when doing so have not been fully evaluated. There is little information regarding the specific indicators that allow cities to better cope and adapt to the impacts of tsunamis, and this information is especially scarce for developing countries such as Chile. The main objective of this study is to develop a resilience model to explore the extent to which local characteristics influence the resilience of Chilean coastal communities to tsunami hazards. Accordingly, this study presents the Coastal Community Resilience model (The CORE model) for exploring the adaptive capacity of coastal areas affected by tsunamis. This model was then applied to fourteen coastal villages, distributed within four towns, three communes, and two regions of Chile. Data comprising 21 indicators that address the physical, environmental, and social resilience aspects of the villages were obtained on-site and from governmental and municipality databases; these data were then subjected to multivariate analysis in order to determine which indicators most and least affect resilience and whether indicators affect resilience positively or negatively. Variation in resilience among the villages was explained by similarities and differences in the administrative-political, urban, rural, and indigenous characteristics of the study areas. In addition to these results, we discuss land use planning considerations to build community resilience, and we provide insight into the utility of the resilience model proposed here. Overall, our findings shed light on gaps in planning policies and opportunities for planning coastal resilient communities, particularly for those where data of explicit indicators are scarce like in Chile and other developing countries.

  相似文献   

16.
Although subduction zones around the world are known to be the source of earthquakes and/or tsunamis, not all segments of these plate boundaries generate destructive earthquakes and catastrophic tsunamis. Costa Rica, in Central America, has subduction zones on both the Pacific and the Caribbean coasts and, even though large earthquakes (Mw = 7.4–7.8) occur in these convergent margins, they do not produce destructive tsunamis. The reason for this is that the seismogenic zones of the segments of the subduction zones that produce large earthquakes in Costa Rica are located beneath land (Nicoya peninsula, Osa peninsula and south of Limón) and not off shore as in most subduction zones around the world. To illustrate this particularity of Costa Rican subduction zones, we show in this work the case for the largest rupture area in Costa Rica (under the Nicoya peninsula), capable of producing Mw ~ 7.8 earthquakes, but the tsunamis it triggers are small and present little potential for damage even to the largest port city in Costa Rica.The Nicoya seismic gap, in NW Costa Rica, has passed its ~50-year interseismic period and therefore a large earthquake will have to occur there in the near future. The last large earthquake, in 1950 generated a tsunami which slightly affected the southwest coast of the Nicoya Peninsula. We present here a simulation to study the possible consequences that a tsunami generated by the next Nicoya earthquake could have for the city of Puntarenas. Puntarenas has a population of approximately eleven thousand people and is located on a 7.5 km long sand bar with a maximum height of 2 m above the mean sea level. This condition makes Puntarenas vulnerable to tsunamis.  相似文献   

17.
A tsunami catalogue for Central America is compiledcontaining 49 tsunamis for the period 1539–1996,thirty seven of them are in the Pacific and twelve inthe Caribbean. The number of known tsunamis increaseddramatically after the middle of the nineteenth century,since 43 events occurred between 1850 and 1996. This isprobably a consequence of the lack of populationliving near the coast in earlier times.The preliminary regionalization of the earthquakessources related to reported tsunamis shows that, inthe Pacific, most events were generated by theCocos-Caribbean Subduction Zone (CO-CA). At theCaribbean side, 5 events are related with the NorthAmerican-Caribbean Plate Boundary (NA-CA) and 7 withthe North Panama Deformed Belt (NPDB).There are ten local tsunamis with a specific damagereport, seven in the Pacific and the rest in theCaribbean. The total number of casualties due to localtsunamis is less than 455 but this number could behigher. The damages reported range from coastal andship damage to destruction of small towns, and theredoes not exist a quantification of them.A preliminary empirical estimation of tsunami hazardindicates that 43% of the large earthquakes (Ms 7.0) along the Pacific Coast of Central America and100% along the Caribbean, generate tsunamis. On thePacific, the Guatemala–Nicaragua coastal segment hasa 32% probability of generating tsunamis after largeearthquakes while the probability is 67% for theCosta Rica–Panama segment. Sixty population centers onthe Pacific Coast and 44 on the Caribbean are exposedto the impact of tsunamis. This estimation alsosuggests that areas with higher tsunami potential inthe Pacific are the coasts from Nicaragua to Guatemalaand Central Costa Rica; on the Caribbean side, Golfode Honduras Zone and the coasts of Panama and CostaRica have major hazard. Earthquakes of magnitudelarger than 7 with epicenters offshore or onshore(close to the coastline) could trigger tsunamis thatwould impact those zones.  相似文献   

18.
19.
De Lange  W. P.  Healy  T. R. 《Natural Hazards》2001,24(3):267-284
The Hauraki Gulf is a semi-enclosed sea next to the largest population centre in New Zealand, the Auckland metropolitan region. The potential tsunami hazard is of concern to regional and local planners around the Hauraki Gulf. The Hauraki Gulf has recorded 11 tsunamis and one meteorological tsunami (rissaga) since 1840.The historical tsunami data are relatively sparse, particularly for the largest events in 1868 and 1883. Moreover, local sources may produce damaging tsunamis but none has occurred during recorded history. Therefore numerical modelling of potential tsunami events provides a powerful tool to obtain data for planning purposes. Three main scenarios have been identified for numerical modelling:1. A teletsunami event from an earthquake off the West Coast of South America. Historically this region has produced the largest teletsunamis in the Hauraki Gulf.2. A tsunami generated by a local earthquake along the Kerepehi Fault. This fault bisects the Gulf, has been active during the last century at the southern inland end, and is overlain by a considerable thickness of soft sediment that may amplify the seismic waves.3. A tsunami generated by a volcanic eruption within the Auckland Volcanic Field. This field has involved a series of mainly monogenetic basaltic eruptions over the last 140,000 years. Many of these eruptions have involved phreatomagmatic eruptions around the coastal margins, or within the shallow waters close to Auckland.  相似文献   

20.
The ability to accurately forecast potential hazards posed to coastal communities by tsunamis generated seismically in both the near and far field requires knowledge of so-called source coefficients, from which the strength of a tsunami can be deduced. Seismic information alone can be used to set the source coefficients, but the values so derived reflect the dynamics of movement at or below the seabed and hence might not accurately describe how this motion is manifested in the overlaying water column. We describe here a method for refining source coefficient estimates based on seismic information by making use of data from Deep-ocean Assessment and Reporting of Tsunamis (DART \circledR^{\circledR}) buoys (tsunameters). The method involves using these data to adjust precomputed models via an inversion algorithm so that residuals between the adjusted models and the DART \circledR^{\circledR} data are as small as possible in a least squares sense. The inversion algorithm is statistically based and hence has the ability to assess uncertainty in the estimated source coefficients. We describe this inversion algorithm in detail and apply it to the November 2006 Kuril Islands event as a case study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号